Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376669

RESUMO

Bats are of significant interest as reservoirs for various zoonotic viruses with high diversity. During the past two decades, many herpesviruses have been identified in various bats worldwide by genetic approaches, whereas there have been few reports on the isolation of infectious herpesviruses. Herein, we report the prevalence of herpesvirus infection of bats captured in Zambia and genetic characterization of novel gammaherpesviruses isolated from striped leaf-nosed bats (Macronycteris vittatus). By our PCR screening, herpesvirus DNA polymerase (DPOL) genes were detected in 29.2% (7/24) of Egyptian fruit bats (Rousettus aegyptiacus), 78.1% (82/105) of Macronycteris vittatus, and one Sundevall's roundleaf bat (Hipposideros caffer) in Zambia. Phylogenetic analyses of the detected partial DPOL genes revealed that the Zambian bat herpesviruses were divided into seven betaherpesvirus groups and five gammaherpesvirus groups. Two infectious strains of a novel gammaherpesvirus, tentatively named Macronycteris gammaherpesvirus 1 (MaGHV1), were successfully isolated from Macronycteris vittatus bats, and their complete genomes were sequenced. The genome of MaGHV1 encoded 79 open reading frames, and phylogenic analyses of the DNA polymerase and glycoprotein B demonstrated that MaGHV1 formed an independent lineage sharing a common origin with other bat-derived gammaherpesviruses. Our findings provide new information regarding the genetic diversity of herpesviruses maintained in African bats.


Assuntos
Quirópteros , Gammaherpesvirinae , Herpesviridae , Animais , Filogenia , Zâmbia/epidemiologia , Herpesviridae/genética
2.
Antiviral Res ; 183: 104932, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32946918

RESUMO

Ebolaviruses and marburgviruses, members of the family Filoviridae, are known to cause fatal diseases often associated with hemorrhagic fever. Recent outbreaks of Ebola virus disease in West African countries and the Democratic Republic of the Congo have made clear the urgent need for the development of therapeutics and vaccines against filoviruses. Using replication-incompetent vesicular stomatitis virus (VSV) pseudotyped with the Ebola virus (EBOV) envelope glycoprotein (GP), we screened a chemical compound library to obtain new drug candidates that inhibit filoviral entry into target cells. We discovered a biaryl sulfonamide derivative that suppressed in vitro infection mediated by GPs derived from all known human-pathogenic filoviruses. To determine the inhibitory mechanism of the compound, we monitored each entry step (attachment, internalization, and membrane fusion) using lipophilic tracer-labeled ebolavirus-like particles and found that the compound efficiently blocked fusion between the viral envelope and the endosomal membrane during cellular entry. However, the compound did not block the interaction of GP with the Niemann-Pick C1 protein, which is believed to be the receptor of filoviruses. Using replication-competent VSVs pseudotyped with EBOV GP, we selected escape mutants and identified two EBOV GP amino acid residues (positions 47 and 66) important for the interaction with this compound. Interestingly, these amino acid residues were located at the base region of the GP trimer, suggesting that the compound might interfere with the GP conformational change required for membrane fusion. These results suggest that this biaryl sulfonamide derivative is a novel fusion inhibitor and a possible drug candidate for the development of a pan-filovirus therapeutic.


Assuntos
Filoviridae/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Descoberta de Drogas , Ebolavirus/efeitos dos fármacos , Filoviridae/classificação , Infecções por Filoviridae/tratamento farmacológico , Infecções por Filoviridae/virologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Receptores Virais/metabolismo , Células Vero
3.
Viruses ; 12(9)2020 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842671

RESUMO

Filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates with high mortality rates. There is no approved therapy against these deadly viruses. Antiviral drug development has been hampered by the requirement of a biosafety level (BSL)-4 facility to handle infectious EBOV and MARV because of their high pathogenicity to humans. In this study, we aimed to establish a surrogate animal model that can be used for anti-EBOV and -MARV drug screening under BSL-2 conditions by focusing on the replication-competent recombinant vesicular stomatitis virus (rVSV) pseudotyped with the envelope glycoprotein (GP) of EBOV (rVSV/EBOV) and MARV (rVSV/MARV), which has been investigated as vaccine candidates and thus widely used in BSL-2 laboratories. We first inoculated mice, rats, and hamsters intraperitoneally with rVSV/EBOV and found that only hamsters showed disease signs and succumbed within 4 days post-infection. Infection with rVSV/MARV also caused lethal infection in hamsters. Both rVSV/EBOV and rVSV/MARV were detected at high titers in multiple organs including the liver, spleen, kidney, and lungs of infected hamsters, indicating acute and systemic infection resulting in fatal outcomes. Therapeutic effects of passive immunization with an anti-EBOV neutralizing antibody were specifically observed in rVSV/EBOV-infected hamsters. Thus, this animal model is expected to be a useful tool to facilitate in vivo screening of anti-filovirus drugs targeting the GP molecule.


Assuntos
Modelos Animais de Doenças , Ebolavirus/genética , Marburgvirus/genética , Estomatite Vesicular/virologia , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Animais , Anticorpos Antivirais/administração & dosagem , Cricetinae , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/imunologia , Mesocricetus , Camundongos , Ratos , Vacinas Sintéticas , Estomatite Vesicular/patologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/terapia , Vesiculovirus/patogenicidade , Proteínas do Envelope Viral/imunologia , Carga Viral
4.
J Gen Virol ; 101(10): 1027-1036, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706330

RESUMO

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


Assuntos
Fezes/virologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Doenças dos Suínos/virologia , Suínos/virologia , Animais , Animais Selvagens/classificação , Animais Selvagens/virologia , Quirópteros/virologia , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Prevalência , Vírus Reordenados/genética , Recombinação Genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética , Sequenciamento Completo do Genoma , Zâmbia/epidemiologia
5.
Virus Genes ; 56(4): 472-479, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32430568

RESUMO

The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N8/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/genética , Migração Animal , Animais , Animais Selvagens/genética , Animais Selvagens/imunologia , Animais Selvagens/virologia , Ásia , Galinhas/virologia , Patos/genética , Patos/imunologia , Patos/virologia , Europa (Continente) , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/imunologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mongólia , Filogenia , Aves Domésticas/virologia
6.
Viruses ; 12(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033383

RESUMO

Porcine sapelovirus (PSV) has been detected worldwide in pig populations. Although PSV causes various symptoms such as encephalomyelitis, diarrhea, and pneumonia in pigs, the economic impact of PSV infection remains to be determined. However, information on the distribution and genetic diversity of PSV is quite limited, particularly in Africa. In this study, we investigated the prevalence of PSV infection in Zambia and characterized the isolated PSVs genetically and biologically. We screened 147 fecal samples collected in 2018 and found that the prevalences of PSV infection in suckling pigs and fattening pigs were high (36.2% and 94.0%, respectively). Phylogenetic analyses revealed that the Zambian PSVs were divided into three different lineages (Lineages 1-3) in the clade consisting of Chinese strains. The Zambian PSVs belonging to Lineages 2 and 3 replicated more efficiently than those belonging to Lineage 1 in Vero E6 and BHK cells. Bioinformatic analyses revealed that genetic recombination events had occurred and the recombination breakpoints were located in the L and 2A genes. Our results indicated that at least two biologically distinct PSVs could be circulating in the Zambian pig population and that genetic recombination played a role in the evolution of PSVs.


Assuntos
Biodiversidade , Variação Genética , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/genética , Doenças dos Suínos/virologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Diarreia/veterinária , Diarreia/virologia , Fazendas , Fezes/virologia , Genoma Viral , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Prevalência , Suínos/virologia , Doenças dos Suínos/epidemiologia , Células Vero , Zâmbia/epidemiologia
7.
Emerg Infect Dis ; 25(8): 1577-1580, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146800

RESUMO

We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.


Assuntos
Quirópteros/virologia , Doença do Vírus de Marburg/virologia , Marburgvirus , Animais , Genes Virais , Humanos , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/classificação , Marburgvirus/genética , Marburgvirus/isolamento & purificação , Filogenia , Prevalência , Vigilância em Saúde Pública , RNA Viral , Zâmbia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA