Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 20(12): 1621-1633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34822125

RESUMO

Photodeoxygenation of dibenzothiophene S-oxide and its derivatives have been used to generate atomic oxygen [O(3P)] to examine its effect on proteins, nucleic acids, and lipids. The unique reactivity and selectivity of O(3P) have shown distinct oxidation products and outcomes in biomolecules and cell-based studies. To understand the scope of its global impact on the cell, we treated MDA-MB-231 cells with 2,8-diacetoxymethyldibenzothiophene S-oxide and UV-A light to produce O(3P) without targeting a specific cell organelle. Cellular responses to O(3P)-release were analyzed using cell viability and cell cycle phase determination assays. Cell death was observed when cells were treated with higher concentrations of sulfoxides and UV-A light. However, significant differences in cell cycle phases due to UV-A irradiation of the sulfoxide were not observed. We further performed RNA-Seq analysis to study the underlying biological processes at play, and while UV-irradiation itself influenced gene expression, there were 9 upregulated and 8 downregulated genes that could be attributed to photodeoxygenation.


Assuntos
Óxidos , Tiofenos , Oxirredução , Tiofenos/farmacologia , Raios Ultravioleta
2.
RSC Chem Biol ; 2(2): 577-591, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458801

RESUMO

The reactivity profile of atomic oxygen [O(3P)] in the condensed phase has shown a preference for the thiol group of cysteines. In this work, water-soluble O(3P)-precursors were synthesized by adding aromatic burdens and water-soluble sulphonic acid groups to the core structure of dibenzothiophene-S-oxide (DBTO) to study O(3P) reactivity in cell lysates and live cells. The photodeoxygenation of these compounds was investigated using common intermediates, which revealed that an increase in aromatic burdens to the DBTO core structure decreases the total oxidation yield due to competitive photodeoxygenation mechanisms. These derivatives were then tested in cell lysates and live cells to profile changes in cysteine reactivity using the isoTOP-ABPP chemoproteomics platform. The results from this analysis indicated that O(3P) significantly affects cysteine reactivity in the cell. Additionally, O(3P) was found to oxidize cysteines within peptide sequences with leucine and serine conserved at the sites surrounding the oxidized cysteine. O(3P) was also found to least likely oxidize cysteines among membrane proteins.

3.
Photochem Photobiol ; 97(6): 1322-1334, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34022069

RESUMO

Sulfoximines are popular scaffolds in drug discovery due to their hydrogen bonding properties and chemical stability. In recent years, the role of reactive intermediates such as nitrenes has been studied in the synthesis and degradation of sulfoximines. In this work, the photochemistry of N-phenyl dibenzothiophene sulfoximine [5-(phenylimino)-5H-5λ4 -dibenzo[b,d]thiophene S-oxide] was analyzed. The structure resembles a combination of N-phenyl iminodibenzothiophene and dibenzothiophene S-oxide, which generate nitrene and O(3 P) upon UV-A irradiation, respectively. The photochemistry of N-phenyl dibenzothiophene sulfoximine was explored by monitoring the formation of azobenzene, a photoproduct of triplet nitrene, using direct irradiation and sensitized experiments. The reactivity profile was further studied through direct irradiation experiments in the presence of diethylamine (DEA) as a nucleophile. The studies demonstrated that N-phenyl dibenzothiophene sulfoximine underwent S-N photocleavage to release singlet phenyl nitrene which formed a mixture of azepines in the presence of DEA and generated moderate amounts of azobenzene in the absence of DEA to indicate formation of triplet phenyl nitrene.


Assuntos
Óxidos , Tiofenos , Estrutura Molecular , Fotoquímica , Tiofenos/química
4.
Bioorg Chem ; 105: 104442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197850

RESUMO

Photodeoxygenation of Dibenzothiophene-S-oxide (DBTO) in UV-A light produces atomic oxygen [O(3P)] and the corresponding sulfide, dibenzothiophene (DBT). Recently, DBTO has been derivatized to study the effect of UV-A light-driven photodeoxygenation in lipids, proteins, and nucleic acids. In this study, two DBTO derivatives with triphenylphosphonium groups were synthesized to promote mitochondrial accumulation. The sulfone analogs of these derivatives were also synthesized and used as fluorescent mitochondrial dyes to assess localization in mitochondria of HeLa cells. These derivatives were then used to study the effect of photodeoxygenation on MDA-MB-231 breast cancer cell line using cell viability assays, cell cycle phase determination tests, and RNA-Seq analysis. The DBTO derivatives were found to significantly decrease cell viability only after UV-A irradiation as a result of generating corresponding sulfides that were found to significantly affect gene expression and cell cycle.


Assuntos
Antineoplásicos/síntese química , Citotoxinas/síntese química , Compostos Organofosforados/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Compostos Organofosforados/farmacologia , Oxigênio/química , Oxigênio/metabolismo , Processos Fotoquímicos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/química , Raios Ultravioleta
5.
RSC Adv ; 10(44): 26553-26565, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519784

RESUMO

A beneficial property of photogenerated reactive oxygen species (ROS) is the capability of oxidant generation within a specific location or organelle inside a cell. Dibenzothiophene S-oxide (DBTO), which is known to undergo a photodeoxygenation reaction to generate ground state atomic oxygen [O(3P)] upon irradiation, was functionalized to afford localization within the plasma membrane of cells. The photochemistry, as it relates to oxidant generation, was studied and demonstrated that the functionalized DBTO derivatives generated O(3P). Irradiation of these lipophilic O(3P)-precursors in the presence of LDL and within RAW 264.7 cells afforded several oxidized lipid products (oxLP) in the form of aldehydes. The generation of a 2-hexadecenal (2-HDEA) was markedly increased in irradiations where O(3P) was putatively produced. The substantial generation of 2-HDEA is not known to accompany the production of other ROS. These cellular irradiation experiments demonstrate the potential of inducing oxidation with O(3P) in cells.

6.
Chem Commun (Camb) ; 55(12): 1706-1709, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30556067

RESUMO

Ground-state atomic oxygen [O(3P)] is an oxidant whose formation in solution was proposed but never proven. Polymer nanocapsules were used to physically separate dibenzothiophene S-oxide (DBTO), a source of O(3P), from an O(3P)-accepting molecule. Irradiation of polymer nanocapsules loaded with DBTO resulted in oxidation of the O(3P)-acceptor placed outside nanocapsules. The results rule out a direct oxygen atom transfer mechanism and are consistent with freely diffusing O(3P) as the oxidant.

7.
J Org Chem ; 82(24): 13333-13341, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29172514

RESUMO

Aromatic heterocyclic oxides, such as dibenzothiophene S-oxide (DBTO), have been suggested to release ground state atomic oxygen [O(3P)] upon irradiation, and as such, they have been used to create a condensed phase reactivity profile for O(3P). However, thiols, which are highly reactive with O(3P) in the gas phase, were not previously investigated. An earlier study of O(3P) with proteins in solution indicated a preference for thiols. A further investigation of the apparent thiophilicity provided the subject for this study. DBTO was employed as a putative O(3P)-precursor. However, the effective rate of O(3P) formation was found to be dependent on reactant concentrations in certain cases. All reactants were found to increase the rate of deoxygenation to some extent, but in the presence of reactants containing an alcohol linked to a reactive functional group, deoxygenation occurred substantially more rapidly. The rate enhancement was quantified and attributed to the reaction of activated O atom within the solvent cage prior to escape into the bulk solution. Through competition experiments, the relative rate constants of O(3P) with thiols and other functional groups were found. A small preference for primary thiols was observed over other thiols, sulfides, and alkenes. A much larger preference was observed for thiols, sulfides, and alkenes over aromatic groups. In summary, DBTO was successfully used as an O(3P)-precursor, and the thiophilicity of O(3P) was confirmed and quantified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA