Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 330(6006): 944-6, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20947727

RESUMO

Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B ~ 10(14) to 10(15) gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 × 10(12) gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far.

2.
Nature ; 461(7268): 1258-60, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19865166

RESUMO

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

3.
Science ; 325(5945): 1222-3, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19729650

RESUMO

White dwarfs typically have masses in a narrow range centered at about 0.6 solar mass (M(o)). Only a few ultramassive white dwarfs (mass > 1.2 M(o)) are known. Those in binary systems are of particular interest, because a small amount of accreted mass could drive them above the Chandrasekhar limit, beyond which they become gravitationally unstable. Using data from the x-ray multimirror mission (XMM)-Newton satellite, we show that the x-ray pulsator RX J0648.0-4418 is a white dwarf with mass > 1.2 M(o), based on dynamical measurements only. This ultramassive white dwarf in a post-common envelope binary with a hot subdwarf can reach the Chandrasekhar limit, and possibly explode as a type Ia supernova, when its helium-rich companion will transfer mass at an increased rate through Roche lobe overflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA