Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12266, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806527

RESUMO

Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.


Assuntos
Abietanos , Apoptose , Proliferação de Células , Humanos , Abietanos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Gengivais/tratamento farmacológico , Neoplasias Gengivais/metabolismo , Neoplasias Gengivais/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Sci Rep ; 14(1): 10958, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740853

RESUMO

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Proliferação de Células , Eugenol , Neoplasias Gengivais , Humanos , Eugenol/farmacologia , Eugenol/uso terapêutico , Neoplasias Gengivais/tratamento farmacológico , Neoplasias Gengivais/patologia , Neoplasias Gengivais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quimioterapia Adjuvante/métodos
3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276004

RESUMO

Oral cancer is considered as one of the most common malignancies worldwide. Its conventional treatment primarily involves surgery with or without postoperative adjuvant therapy. The targeting of signaling pathways implicated in tumorigenesis is becoming increasingly prevalent in the development of new anticancer drug candidates. Based on our recently published data, Rapamycin, an inhibitor of the mTOR pathway, exhibits selective antitumor activity in oral cancer by inhibiting cell proliferation and inducing cancer cell apoptosis, autophagy, and cellular stress. In the present study, our focus is on elucidating the genetic determinants of Rapamycin's action and the interaction networks accountable for tumorigenesis suppression. To achieve this, gingival carcinoma cell lines (Ca9-22) were exposed to Rapamycin at IC50 (10 µM) for 24 h. Subsequently, we investigated the genetic profiles related to the cell cycle, apoptosis, and autophagy, as well as gene-gene interactions, using QPCR arrays and the Gene MANIA website. Overall, our results showed that Rapamycin at 10 µM significantly inhibits the growth of Ca9-22 cells after 24 h of treatment by around 50% by suppression of key modulators in the G2/M transition, namely, Survivin and CDK5RAP1. The combination of Rapamycin with Cisplatin potentializes the inhibition of Ca9-22 cell proliferation. A P1/Annexin-V assay was performed to evaluate the effect of Rapamycin on cell apoptosis. The results obtained confirm our previous findings in which Rapamycin at 10 µM induces a strong apoptosis of Ca9-22 cells. The live cells decreased, and the late apoptotic cells increased when the cells were treated by Rapamycin. To identify the genes responsible for cell apoptosis induced by Rapamycin, we performed the RT2 Profiler PCR Arrays for 84 apoptotic genes. The blocked cells were believed to be directed towards cell death, confirmed by the downregulation of apoptosis inhibitors involved in both the extrinsic and intrinsic pathways, including BIRC5, BNIP3, CD40LG, DAPK1, LTA, TNFRSF21 and TP73. The observed effects of Rapamycin on tumor suppression are likely to involve the autophagy process, evidenced by the inhibition of autophagy modulators (TGFß1, RGS19 and AKT1), autophagosome biogenesis components (AMBRA1, ATG9B and TMEM74) and autophagy byproducts (APP). Identifying gene-gene interaction (GGI) networks provided a comprehensive view of the drug's mechanism and connected the studied tumorigenesis processes to potential functional interactions of various kinds (physical interaction, co-expression, genetic interactions etc.). In conclusion, Rapamycin shows promise as a clinical agent for managing Ca9-22 gingiva carcinoma cells.

4.
Nutr Rev ; 80(8): 1927-1941, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35172003

RESUMO

The prevalence of obesity tripled worldwide between 1975 and 2016, and it is projected that half of the US population will be overweight by 2030. The obesity pandemic is attributed, in part, to the increasing consumption of the high-fat, high-carbohydrate Western diet, which predisposes to the development of the metabolic syndrome and correlates with decreased cognitive performance. In contrast, the high-fat, low-carbohydrate ketogenic diet has potential therapeutic roles and has been used to manage intractable seizures since the early 1920s. The brain accounts for 25% of total body glucose metabolism and, as a result, is especially susceptible to changes in the types of nutrients consumed. Here, we discuss the principles of brain metabolism with a focus on the distinct effects of the Western and ketogenic diets on the progression of neurological diseases such as epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury, highlighting the need to further explore the potential therapeutic effects of the ketogenic diet and the importance of standardizing dietary formulations to assure the reproducibility of clinical trials.


Assuntos
Dieta Cetogênica , Epilepsia , Carboidratos , Humanos , Obesidade , Reprodutibilidade dos Testes
5.
J Vasc Res ; 59(3): 137-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35038712

RESUMO

Inflammatory cells and cytokines are known for long to worsen the development of atherosclerotic plaques in mice, and intense efforts are today devoted to develop anti-inflammatory therapeutic strategies to slow down plaque development. Increasing data indicate that plaque inflammation is intimately associated with microcalcifications, which exert harmful effects eventually culminating with plaque rupture. In this review article, we will first introduce microcalcification location, detection, and effects in atherosclerotic plaques. Then, we will present the numerous data suggesting that inflammatory cells and molecules are responsible for the formation of microcalcifications and the articles showing that microcalcifications stimulate macrophages and smooth muscle cells to produce more pro-inflammatory cytokines. Finally, we will discuss the possibility that microcalcifications might stimulate smooth muscle cells to produce larger and more stable calcifications to stabilize plaques, to exit the vicious cycle associating inflammation and microcalcification in atherosclerotic plaques.


Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Animais , Citocinas , Inflamação , Camundongos
6.
Front Med (Lausanne) ; 8: 620990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816521

RESUMO

Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response.

7.
Curr Med Chem ; 28(12): 2369-2391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32787753

RESUMO

Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.


Assuntos
Esclerose Lateral Amiotrófica , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Preparações Farmacêuticas , Animais , Reposicionamento de Medicamentos , Edaravone , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Fármacos Neuroprotetores/uso terapêutico
8.
J Mol Cell Cardiol ; 129: 2-12, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769016

RESUMO

INTRODUCTION AND AIMS: Calcific aortic valve disease (CAVD) is the most common heart valve disease in western countries. It has been reported that activation of the calcium-sensing receptor(CaSR) expressed by vascular smooth muscle cells prevents vascular calcification. However, to date, the CaSR's expression and function in cardiac valves have not been studied. The present study sought to evaluate the presence of the CaSR within human valvular interstitial cells (hVICs), assess the CaSR's functionality, and ascertain its involvement in hVIC calcification. METHODS AND RESULTS: Data from Western blot, flow cytometry and immunocytochemistry experiments demonstrated that primary hVICs express the CaSR. The receptor was functional, since the incubation of hVICs with the calcimimetic R-568 significantly increased Ca2+-induced ERK1/2 phosphorylation, and exposure to the calcilytic NPS2143 reduced ERK1/2 activation. A reduction in endogenous CaSR expression by hVICs (using siRNA) was associated with significantly lower levels of Ca2+-induced mineralization (quantified using Alizarin Red staining). Similar data were obtained after the pharmacological inhibition of CaSR activity by the calcilytic NPS2143. In contrast, overexpression of a functional CaSR amplified Ca2+-induced calcification. Pharmacological activation of the CaSR with the calcimimetic R-568 showed similar effects. CaSR's procalcific properties are associated with increased osteogenic transition (as characterized by elevated mRNA expression of bone morphogenetic protein 2 and osterix), and reduced the expression of the calcification inhibitor osteopontin. Histological analysis of 12 human aortic tricuspid valves showed that CaSR expression was greater in calcified areas than in non-calcified areas. These data were confirmed by Western blots. CONCLUSIONS: To the best of our knowledge, this study is the first to have demonstrated that hVICs express a functional CaSR. Taken as a whole, our data suggest that activation of the CaSR expressed by hVICs might be a key promoter of CAVD progression.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Cálcio/metabolismo , Regulação para Baixo , Humanos , Minerais/metabolismo , Osteogênese , Receptores de Detecção de Cálcio/genética , Valva Tricúspide/metabolismo
9.
Nephrol Dial Transplant ; 34(7): 1125-1134, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481303

RESUMO

BACKGROUND: Vascular calcification (VC) is amplified during chronic kidney disease, partly due to uraemic toxins such as inorganic phosphate (Pi) and indoxyl sulphate (IS) that trigger osteogenic differentiation of vascular smooth muscle cells (VSMCs). These toxins also alter endothelial cell (EC) functions but whether this contributes to VC is unknown. Here, we hypothesized that ECs exposed to Pi and IS promote VSMC calcification. METHODS: Human umbilical vein ECs were treated with Pi, IS or both, and then the conditioned media [endothelial cell conditioned medium (EC-CM)] was collected. Human aortic SMCs (HASMCs) were exposed to the same toxins, with or without EC-CM, and then calcification and osteogenic differentiation were evaluated. Procalcifying factors secreted from ECs in response to Pi and IS were screened. Rat aortic rings were isolated to assess Pi+IS-induced calcification at the tissue level. RESULTS: Pi and Pi+IS induced HASMCs calcification, which was significantly exacerbated by EC-CM. Pi+IS induced the expression and secretion of interleukin-8 (IL-8) from ECs. While IL-8 treatment of HASMCs stimulated the Pi+IS-induced calcification in a concentration-dependent manner, IL-8 neutralizing antibody, IL-8 receptors antagonist or silencing IL-8 gene expression in ECs before collecting EC-CM significantly prevented the EC-CM procalcifying effect. IL-8 did not promote the Pi+IS-induced osteogenic differentiation of HASMCs but prevented the induction of osteopontin (OPN), a potent calcification inhibitor. In rat aortic rings, IS also promoted Pi-induced calcification and stimulated the expression of IL-8 homologues. Interestingly, in the Pi+IS condition, IL-8 receptor antagonist lifted the inhibition of OPN expression and partially prevented aortic calcification. CONCLUSION: These results highlight a novel role of IL-8, whose contribution to VC in the uraemic state results at least from interaction between ECs and VSMCs.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Indicã/farmacologia , Interleucina-8/metabolismo , Fosfatos/farmacologia , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/etiologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/complicações , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA