Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 86(11): 1576-83, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24070655

RESUMO

Humans and genetically engineered mice with recessively inherited CPVT develop arrhythmia which may arise due to malfunction or degradation of calsequestrin (CASQ2). We investigated the relation between protein level and arrhythmia severity in CASQ2(D307H/D307H) (D307H), compared to CASQ2(Δ/Δ) (KO) and wild type (WT) mice. CASQ2 expression and Ca²âº transients were recorded in cardiomyocytes from neonatal or adult mice. Arrhythmia was studied in vivo using heart rhythm telemetry at rest, exercise and after epinephrine injection. CASQ2 protein was absent in KO heart. Neonatal D307H and WT hearts expressed significantly less CASQ2 protein than the level found in the adult WT. Adult D307H expressed only 20% of CASQ2 protein found in WT. Spontaneous Ca²âº release was more prevalent in neonatal KO cardiomyocytes (89%) compared to 33-36% of either WT or D307H, respectively, p<0.001. Adult cardiomyocytes from both mutant mice had more Ca²âº abnormalities compared to control (KO: 82%, D307H 63%, WT 12%, p<0.01). Calcium oscillations were most common in KO cardiomyocytes. We then treated mice with bortezomib to inhibit CASQ2(D307H) degradation. Bortezomib increased CASQ2 expression in D307H hearts by ∼50% (p<0.05). Bortezomib-treated D307H mice had lower CPVT prevalence and less premature ventricular beats during peak exercise. No benefit against arrhythmia was observed in bortezomib treated KO mice. These results indicate that the mutant CASQ2(D307H) protein retains some of its physiological function. Its expression decreases with age and is inversely related to arrhythmia severity. Preventing the degradation of mutant protein should be explored as a possible therapeutic strategy in appropriate CPVT2 patients.


Assuntos
Envelhecimento/genética , Calsequestrina/genética , Mutação , Taquicardia Ventricular/genética , Animais , Animais Recém-Nascidos , Ácidos Borônicos/farmacologia , Bortezomib , Cálcio/metabolismo , Calsequestrina/biossíntese , Células Cultivadas , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Pirazinas/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Taquicardia Ventricular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA