Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230171, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034694

RESUMO

Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Aclimatação , Ecossistema , Animais , Aclimatação/fisiologia , Biomassa , Calor Extremo/efeitos adversos , Ciclo do Carbono , Gastrópodes/fisiologia , Cadeia Alimentar , Temperatura Alta/efeitos adversos
2.
J Exp Biol ; 225(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702952

RESUMO

Temperature is a key driver of metabolic rates. So far, we know little about potential physiological adjustments of subtropical corals to seasonal temperature changes (>8°C) that substantially exceed temperature fluctuation experienced by their counterparts in the tropics. This study investigated the effect of temperature reductions on Montastraea cavernosa and Porites astreoides in Bermuda (32°N; sea surface temperature ∼19-29°C) over 5 weeks, applying the following treatments: (i) constant control temperature at 28°C, and (ii) temperature reduction (0.5°C day-1) followed by constant temperature (20 days; acclimatization period) at 24°C and (iii) at 20°C. Both species decreased photosynthesis and respiration during temperature reduction as expected, which continued to decrease during the acclimatization period, indicating adjustment to a low energy turnover rather than thermal compensation. Trajectories of physiological adjustments and level of thermal compensation, however, differed between species. Montastraea cavernosa zooxanthellae metrics showed a strong initial response to temperature reduction, followed by a return to close to control values during the acclimatization period, reflecting a high physiological flexibility and low thermal compensation. Porites astreoides zooxanthellae, in contrast, showed no initial response, but an increase in pigment concentration per zooxanthellae and similar photosynthesis rates at 24°C and 20°C at the end of the experiment, indicating low acute thermal sensitivity and the ability for thermal compensation at the lowest temperature. Respiration decreased more strongly than photosynthesis, leading to significant build-up of biomass in both species (energy reserves). Results are important in the light of potential poleward migration of corals and of potential latitudinal and species-specific differences in coral thermal tolerance.


Assuntos
Antozoários , Aclimatação/fisiologia , Animais , Antozoários/fisiologia , Recifes de Corais , Temperatura Alta , Estações do Ano , Simbiose/fisiologia , Temperatura
3.
Glob Chang Biol ; 26(2): 417-430, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670451

RESUMO

Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near-natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late-spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short-term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.


Assuntos
Fucus , Zosteraceae , Mudança Climática , Ecossistema , Temperatura
4.
Glob Chang Biol ; 24(9): 4357-4367, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29682862

RESUMO

Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.


Assuntos
Organismos Aquáticos/fisiologia , Mudança Climática , Temperatura Alta/efeitos adversos , Invertebrados/fisiologia , Animais , Alemanha , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA