Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 543: 152-6, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23583594

RESUMO

Although functional disruption of the cerebrovasculature, which is called the "neurovascular unit (NVU)", may lead to amplification of ischemia-induced injury, changes in the gap junctional proteins within the NVU and their pathophysiological roles after brain injury remain controversial. We previously demonstrated that the intravenous injection of neural progenitor cells (NPCs) have therapeutic potential for improving the spatial learning dysfunction and depression-like behaviors observed after cerebral ischemia. In this study, we investigated whether severe cerebral ischemia would alter the expression of gap junctional proteins in isolated brain capillaries and examined the effect of intravenous injection of NPCs on the levels of these proteins. Cerebral ischemia induced a sustained decrease in the level of the gap junctional protein connexin 43 (Cx43) in the isolated brain capillaries, whereas the level of aquaporin 4 (AQP-4) was transiently increased. The injection of NPCs increased the level of Cx43 compared that of vehicle in the microsphere embolism (ME) rats, suggesting this decrease to be a possible mechanism for disruption of the astrocyte-endothelial cell interface within the NVU without causing any changes in the level of AQP-4 and N-cadherin. We also demonstrated that some of the intravenously injected NPCs migrated into the blood vessels in the peri-infarct area. These results suggest that the intravenous injection of the NPCs would remodel the NVU after severe cerebral ischemia, which remodeling might be associated with functional improvement following the NPC injection.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Conexina 43/metabolismo , Células-Tronco Neurais/transplante , Animais , Aquaporina 4/farmacologia , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Caderinas/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar
2.
Brain Behav ; 3(2): 43-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23532762

RESUMO

Earlier we demonstrated that the injection of neural progenitor cells (NPCs) has therapeutic potential for the improvement of learning dysfunction after cerebral ischemia. However, it remained to be clarified how transplantation of NPCs can improve ischemia-induced dysfunction. In this study, we examined whether intravenous injection of NPCs after cerebral ischemia could enhance angiogenesis by affecting the expression of angiogenic factors. The injection of NPCs on day 7 after cerebral ischemia enhanced angiogenesis on day 28. Vascular endothelial growth factor (VEGF) and its receptor VEGFR2 were increased in expression by the NPC injection. The level of angiopoietin-1 (Ang-1), an angiogenic factor, but not that of Ang-2, which acts as an antagonist for the Ang-1 receptor, was also increased on day 28. In addition, the expression of Ang-1 receptor Tie2 was enhanced in brain capillaries. Furthermore, the amounts of tight junctional proteins, which are in the blood-brain barrier and whose expression occurs downstream of Ang-1/Tie2 signaling, were increased by the NPC injection. These results suggest that the NPC injection promoted angiogenesis through Ang-1/Tie2 and/or VEGF/VEGFR2 signaling in brain capillaries after cerebral ischemia. Such signaling might have the potential for causing vascular stabilization and maturation for a long period after cerebral ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA