Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 424(Pt C): 127570, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753647

RESUMO

Coastal ecosystem health is of vital importance to human well-being. Field investigations of major pollutants along the whole coast of China were carried out to explore associations between coastal development activities and pollutant inputs. Measurements of target pollutants such as PFAAs and PAHs uncovered notable levels in small estuary rivers. The Yangtze River was identified to deliver the highest loads of these pollutants to the seas as a divide for the spatial distribution of pollutant compositions. Soil concentrations of the volatile and semi-volatile pollutants showed a cold-trapping effect in pace with increasing latitudinal gradient. The coastal ecosystem is facing high ecological risks from metal pollution, especially copper (Cu) and zinc (Zn), while priority pollutants of high risks vary for different kinds of protected species, and the ecological risks were influenced by both climate and physicochemical properties of environmental matrices, which should be emphasized to protect and restore coastal ecosystem functioning.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Oceanos e Mares , Medição de Risco , Rios , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 239: 670-680, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29709838

RESUMO

Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed.


Assuntos
Mudança Climática , Ecossistema , Poluição Ambiental , Conservação dos Recursos Naturais , Ecologia , Humanos
3.
Science ; 306(5705): 2236-9, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15576572

RESUMO

Tropical regions have been reported to play a key role in climate dynamics. To date, however, there are uncertainties in the timing and the amplitude of the response of tropical ecosystems to millennial-scale climate change. We present evidence of an asynchrony between terrestrial and marine signals of climate change during Heinrich events preserved in marine sediment cores from the Brazilian continental margin. The inferred time lag of about 1000 to 2000 years is much larger than the ecological response to recent climate change and appears to be related to the nature of hydrological changes.


Assuntos
Clima , Ecossistema , Plantas , Árvores , Clima Tropical , Oceano Atlântico , Brasil , Isótopos de Carbono , Gleiquênias , Sedimentos Geológicos , Isótopos de Nitrogênio , Pólen , Chuva , Água do Mar , Esporos , Tempo
5.
Naturwissenschaften ; 89(1): 23-30, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12008969

RESUMO

Mangroves are highly complex ecosystems occupying a major part of tropical coastlines. High primary productivity, efficient biological nutrient recyling and a permanent exchange with terrestrial and marine ecosystems are their common features. Despite the high production and export rates of leaf litter, mangrove detritus has been reported to be of minor importance in sustaining marine food webs. The geographical distribution of mangrove-derived organic matter (OM) in marine sediments is found to be restricted to the vicinity of its source. Dissolved nutrient inputs from mangroves and rivers may fuel the production of marine OM. In this paper we assess the relevance of mangroves for the production and sedimentation of OM in the tropical coastal ocean based on data available from the literature and our own research results. We estimate the rates of carbon accumulation in mangrove sediments and of carbon export to the coastal seas. From the rates of litter fall and export we calculate carbon accumulating in mangrove sediments to be in the order of 23x10(12) g C per year and mangrove carbon introduced into the coastal ocean to be in the order of 46x10(12) g C per year. They account for about 11% of the total input of terrestrial carbon into the ocean and 15% of the total carbon accumulating in modern marine sediments.


Assuntos
Ecossistema , Clima Tropical , Sedimentos Geológicos , Magnoliopsida/fisiologia , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA