Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biochimie ; 219: 63-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37673171

RESUMO

Rickettsia typhi is the causative agent of murine typhus (endemic typhus), a febrile illness that can be self-contained, though in some cases it can progress to death. The three dimensional structure of Methionyl-tRNA Synthetase from R. typhi (RtMetRS) in complex with its substrate l-methionine was solved by molecular replacement and refined at 2.30 Å resolution in space group P1 from one X-ray diffraction dataset. Processing and refinement trials were decisive to establish the lower symmetry space group and indicated the presence of twinning with four domains. RtMetRS belongs to the MetRS1 family and was crystallized with the CP domain in an open conformation, what is distinctive from other MetRS1 enzymes whose structures were solved with a bound L-methionine (therefore, in a closed conformation). This conformation resembles the ones observed in the MetRS2 family.


Assuntos
Metionina tRNA Ligase , Animais , Camundongos , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Aminoácidos , Rickettsia typhi/metabolismo , Difração de Raios X , Metionina/metabolismo
2.
Biochimie ; 218: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37709188

RESUMO

The pathogen Paracoccidioides lutzii (Pb01) is found in South America countries Colombia, Ecuador, Venezuela and Brazil, especially in the central, west, and north regions of the latter. It belongs to the Ajellomycetaceae family, Onygenales order, and is typically thermodimorphic, presenting yeast cells when it grows in animal tissues, but mycelia when in the environment, where it produces the infectious propagule. This fungus is one of the etiologic agents of Paracoccidioidomycosis (PCM), the most important endemic fungal infection in Latin America. Investigations on its genome have contributed to a better understanding about its metabolism and revealed the complexity of several metabolic glycolytic pathways. Glyceraldehyde-3-Phosphate Dehydrogenase from Paracoccidioides lutzii (PlGAPDH) is considered a moonlighting protein and participates in several biological processes of this pathogen. The enzyme was expressed and purified, as seen in SDS-PAGE gel, crystallized and had its three dimensional structure (3D) determined in complex with NAD+, a sulphate ion and d-galactonic acid, therefore, a type of 'GAA site'. It is the first GAPDH structure to show this chemical type in this site and how this protein can bind an acid derived from oxidation of a linear hexose.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Animais , Paracoccidioides/genética , Paracoccidioidomicose/epidemiologia , Paracoccidioidomicose/microbiologia , Brasil/epidemiologia , Açúcares
3.
Biochimie ; 184: 18-25, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524435

RESUMO

The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase from Schistosoma mansoni (SmGAPDH) is characterized as a therapeutical target for schistosomiasis. In this context, we report here the experimental structure, structural analyses and comparisons of SmGAPDH, the first one from a Platyhelminth. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.51 Å resolution. SmGAPDH is the only GAPDH to present the sequence NNR (its residues 114-116) which leads to (especially R116) a hydrogen bond network that possibly reflects on the flexibility of residues to interact with the adenine part of NAD+, speculated to be important for differential drug design.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Proteínas de Helminto/química , Modelos Moleculares , Schistosoma mansoni/enzimologia , Animais , Cristalografia por Raios X
4.
Biochimie ; 175: 181-188, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464165

RESUMO

Chagas disease is one of seventeen neglected tropical diseases according to the World Health Organization (WHO). The histidine-glutamate metabolic pathway is an oxidative route that has shown to be relevant for the bioenergetics in Trypanosoma cruzi, the etiological agent for Chagas disease. Histidine ammonia-lyase participates in the first stage of the histidine catabolism, catalyzing the conversion of l-histidine into urocanate. This work presents the three-dimensional (3D) structure of Trypanosoma cruzi histidine ammonia-lyase enzyme (TcHAL) and some comparisons of it to homologous structures. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.55 Å resolution. After refinement, some structural analyses indicated that the structure does not contain the active site protection domain, in opposition to previously known 3D structures from plants and fungi phenylalanine ammonia-lyase, therefore, it is the first structure of eukaryotic ammonia-lyases that lacks this domain.


Assuntos
Histidina Amônia-Liase/química , Modelos Moleculares , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Cristalografia por Raios X , Domínios Proteicos
5.
Int J Biol Macromol ; 146: 716-724, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843618

RESUMO

The enzyme Urocanate Hydratase (UH) participates in the catabolic pathway of L-histidine. Trypanosoma cruzi Urocanate Hydratase (TcUH) is identified as a therapeutic molecular target in the WHO/TDR Targets Database. We report the 3D structure determination and number of features of TcUH, and compared it to other few available bacterial UH structures. Each monomer presents two domains and one NAD+ molecule. Superpositions revealed differences in the relative orientation of domains within monomers, such that TcUH monomer A resembles Urocanate Hydratase from Geobacillus kaustophilus (GkUH) (open conformation), while monomer C resembles Urocanate Hydratase from Pseudomonas putida (PpUH) and Urocanate Hydratase from Bacillus subtilis (BsUH) (closed conformations). We use the structure of TcUH to make considerations about 3 non-deleterious and 2 deleterious mutations found in human UHs: non-deleterious mutations could be accommodated without large displacements or interaction interruptions, whereas deleterious mutations in one case might disrupt an α-helix (as previously suggested) and in the other case, besides disrupting the enzyme interaction with the substrate, might interfere with interdomain movement.


Assuntos
Trypanosoma cruzi/enzimologia , Urocanato Hidratase/ultraestrutura , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Clonagem Molecular , Cristalização , Geobacillus/enzimologia , Histidina , NAD/ultraestrutura , Conformação Proteica em alfa-Hélice , Pseudomonas putida/enzimologia , Reprodutibilidade dos Testes , Alinhamento de Sequência
6.
N Biotechnol ; 53: 65-72, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31306784

RESUMO

Metagenomics is a modern approach to discovery of new enzymes with novel properties. This article reports the structure of a new lipase, belonging to family I.1, obtained by means of metagenomics. Its structure presents a fold typical of α/ß hydrolases, with the lid in closed conformation. The protein was previously shown to present high thermostability and to be stable in aqueous solutions of polar organic solvents at high concentrations [30% (V/V)]. Molecular dynamics studies showed that the protein maintains its structure well in organic solvents. They also suggested that its thermostability might be enhanced if it were mutated to present a disulfide bond similar to that typically found in lipase family I.2. These findings identify this lipase as a good candidate for further improvement through protein engineering.


Assuntos
Lipase/análise , Lipase/genética , Metagenômica , Temperatura , Sequência de Aminoácidos , Cristalografia por Raios X , Estabilidade Enzimática , Lipase/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Engenharia de Proteínas , Alinhamento de Sequência , Soluções
7.
Int J Biol Macromol ; 137: 442-454, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254575

RESUMO

LipMF3 is a new lipase isolated from a metagenomic library derived from a fat-contaminated soil. It belongs to the lipase subfamily I.1 and has identities of 68% and 67% with lipases of Chromobacterium violaceum and C. amazonense, respectively. Genes encoding LipMF3 and its cognate foldase, LifMF3, were cloned and co-expressed in Escherichia coli. The highest hydrolytic activity of purified Lip-LifMF3 was at 40 °C and pH 6.5. Under these conditions, the highest activity was against tributyrin (1650 U mg-1), but it also had high activity against olive oil (862 U mg-1). It was stable in hydrophilic organic solvents (25%, v/v in water) with residual activity around 100% after 24 h. It also showed stability over a wide pH range (5.5 to 11) with residual activity above 80% after 24 h. Lip-LifMF3 was immobilized by covalent bonding onto Immobead 150P and by adsorption onto Sepabeads FP-BU. The latter preparation gave the best results, producing 94% conversion after 5 h for the synthesis of ethyl oleate and a 90% enantiomeric excess of the product (R)­1­phenylethyl acetate for the kinetic resolution of (R,S)­1­phenyl­1­ethanol. The results obtained in this work provide a basis for the development of applications of Lip-LifMF3 in biocatalysis.


Assuntos
Ácidos Graxos/análise , Biblioteca Gênica , Lipase/química , Lipase/metabolismo , Metagenoma , Microbiologia do Solo , Solo/química , Sequência de Aminoácidos , Chromobacterium/enzimologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica , Solventes/farmacologia , Temperatura , Triglicerídeos/metabolismo
8.
PLoS One ; 14(4): e0214601, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998678

RESUMO

RecA is a multifunctional protein that plays a central role in DNA repair in bacteria. The structural Make ATP Work motif (MAW) is proposed to control the ATPase activity of RecA. In the present work, we report the biochemical activity and structural effects of the L53Q mutation at the MAW motif of the RecA protein from H. seropedicae (HsRecA L53Q). In vitro studies showed that HsRecA L53Q can bind ADP, ATP, and ssDNA, as does wild-type RecA. However, the ATPase and DNA-strand exchange activities were completely lost. In vivo studies showed that the expression of HsRecA L53Q in E. coli recA1 does not change its phenotype when cells were challenged with MMS and UV. Molecular dynamics simulations showed the L53Q point mutation did not cause large conformational changes in the HsRecA structure. However, there is a difference on dynamical cross-correlation movements of the residues involved in contacts within the ATP binding site and regions that hold the DNA binding sites. Additionally, a new hydrogen bond, formed between Q53 and T49, was hypothesized to allow an independent motion of the MAW motif from the hydrophobic core, what could explain the observed loss of activity of HsRecA L53Q.


Assuntos
Trifosfato de Adenosina/metabolismo , Reparo do DNA , Herbaspirillum/genética , Recombinases Rec A/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , DNA de Cadeia Simples/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Hidrólise , Simulação de Dinâmica Molecular , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Raios Ultravioleta
9.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 581-588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29501559

RESUMO

Naegleria gruberi is a free life amoeba believed to have more than one billion years of existence; it is not pathogenic and had its genome sequenced, which revealed a high complexity in the metabolic pathways. This paper presents the experimental structure of GAPDH from N. gruberi, the first one belonging to the phylum Percolozoa, comparisons to structures from various species and molecular dynamics studies of some particular features. The final refined structure presents Rcryst = 15.54% and Rfree = 19.84%. The catalytic domain formed by residues 134 to 313 is highly conserved, as expected, with the exception of Asn145, present only in NgGAPDH, while the other GAPDHs present either Ser or Thr on the corresponding position. Molecular dynamics analysis revealed that Asn145 has correlated motions with residues Ala123, Thr125 and Pro126 that belong to what was called "bonded loop". NgGAPDH residue Met35 presents an extended side chain, closer to the cofactor adenine ring than corresponding (different) residues and conformations found in some parasitic protozoa and the human GAPDHs. The enzyme was previously reported to present positive cooperativity, which is hypothesized to be related to certain atom distances.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Naegleria/enzimologia , Proteínas de Protozoários/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Proteínas de Protozoários/metabolismo , Análise de Sequência de Proteína , Relação Estrutura-Atividade
10.
ACS Omega ; 3(8): 8683-8690, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458999

RESUMO

The well-known difficulty to obtain high-quality protein crystals has motivated researchers to come up with new methods or modifications of established crystallization methods to stimulate the growth of good diffracting crystals. In the present work, a new approach, using a protein thin film organized by external electric field (EEF) as a template for protein crystal growth, is introduced. This method increased nucleation of hen egg white lysozyme (HEWL) in comparison with the classical vapor diffusion method, besides improving crystal morphology and size. X-ray diffraction analyses indicated improvements in crystal quality. When HEWL was crystallized at pH 6.2, in which this protein presents biological activity, the control crystal presented a poorly ordered crystalline structure and a low resolution cutoff at 3.42 Å, whereas the crystal grown with the EEF protein film revealed a high-resolution limit at 1.67 Å. These results suggest that protein films organized by EEF may improve protein crystals and their data quality.

11.
Proteins ; 85(10): 1931-1943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28677327

RESUMO

Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein.


Assuntos
Proteínas de Bactérias/química , Plantas/microbiologia , Xylella/química , Cristalografia por Raios X , Espalhamento a Baixo Ângulo , Xylella/patogenicidade
12.
Protein Expr Purif ; 127: 125-130, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27426132

RESUMO

Naegleria gruberi had its genome sequenced by Fritz-Laylin and collaborators in 2010. It is not pathogenic, but has characteristics similar to those of Naegleria fowleri, opportunistic pathogen that can cause fatal encephalitis in humans. N. gruberi genome has contributed to a better understanding of the primitive eukaryotic metabolism and revealed the complexity of several metabolic pathways. In this paper we describe the expression, purification, enzyme characterization and crystallization of N. gruberi GAPDH, the first one for an organism belonging to phylum Percolozoa. The results indicated that 10 mM, 8.0 and 25 °C are the optimum arsenate concentration, pH and temperature, respectively. The enzyme presents allosteric positive cooperativity for substrates NAD(+) and G3P as indicated by the Hill coefficients. The phylogenetic proximity between N. fowleri and N. gruberi suggests that contributions from the study of the latter might provide information to assist the search for treatments of Primary Amebic Meningoencephalitis, especially, in this work, taking into account that GAPDH is identified as a therapeutic target.


Assuntos
Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases , Naegleria/genética , Proteínas de Protozoários , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/sangue , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/isolamento & purificação , Naegleria/enzimologia , Domínios Proteicos , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
13.
PLoS One ; 11(7): e0159871, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27447485

RESUMO

The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.


Assuntos
Herbaspirillum/enzimologia , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , DNA/genética , DNA/metabolismo , Ativação Enzimática , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes , Eletricidade Estática , Relação Estrutura-Atividade
14.
PLoS One ; 11(2): e0150008, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26927837

RESUMO

Dengue fever has spread worldwide and affects millions of people every year in tropical and subtropical regions of Africa, Asia, Europe and America. Since there is no effective vaccine against the dengue virus, prevention of disease transmission depends entirely on regulating the vector (Aedes aegypti) or interrupting human-vector contact. The aim of this study was to assess the oviposition deterrent activity of essential oils of three cultivars of torch ginger (Etlingera elatior, Zingiberaceae) against the dengue mosquito. Analysis of the oils by gas chromatography (GC)-mass spectrometry revealed the presence of 43 constituents, of which α-pinene, dodecanal and n-dodecanol were the major components in all cultivars. Solutions containing 100 ppm of the oils exhibited oviposition deterrent activities against gravid Ae. aegypti females. GC analysis with electroantennographic detection indicated that the oil constituents n-decanol, 2-undecanone, undecanal, dodecanal, trans-caryophyllene, (E)-ß-farnesene, α-humulene, n-dodecanol, isodaucene and dodecanoic acid were able to trigger antennal depolarization in Ae. aegypti females. Bioassays confirmed that solutions containing 50 ppm of n-dodecanol or dodecanal exhibited oviposition deterrent activities, while a solution containing the alcohol and aldehyde in admixture at concentrations representative of the oil presented an activity similar to that of the 100 ppm oil solution. Docking and molecular dynamics simulations verified that the interaction energies of the long-chain oil components and Ae. aegypti odorant binding protein 1 were quite favorable, indicating that the protein is a possible oviposition deterrent receptor in the antenna of Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Flores/química , Simulação de Dinâmica Molecular , Óleos Voláteis/farmacologia , Zingiberaceae/química , Aedes/metabolismo , Aedes/fisiologia , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Dengue/transmissão , Feminino , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/metabolismo , Insetos Vetores/fisiologia , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Conformação Proteica
15.
Microb Cell Fact ; 13: 171, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25510188

RESUMO

BACKGROUND: Metagenomics is a useful tool in the search for new lipases that might have characteristics that make them suitable for application in biocatalysis. This paper reports the cloning, co-expression, purification and characterization of a new lipase, denominated LipG9, and its specific foldase, LifG9, from a metagenomic library derived from a fat-contaminated soil. RESULTS: Within the metagenomic library, the gene lipg9 was cloned jointly with the gene of the foldase, lifg9. LipG9 and LifG9 have 96% and 84% identity, respectively, with the corresponding proteins of Aeromonas veronii B565. LipG9 and LifG9 were co-expressed, both in N-truncated form, in Escherichia coli BL21(DE3), using the vectors pET28a(+) and pT7-7, respectively, and then purified by affinity chromatography using a Ni(2+) column (HiTrap Chelating HP). The purified enzyme eluted from the column complexed with its foldase. The molecular masses of the N-truncated proteins were 32 kDa for LipG9, including the N-terminal His-tag with 6 residues, and 23 kDa for LifG9, which did not have a His-tag. The biochemical and kinetic characteristics of the purified lipase-foldase preparation were investigated. This preparation was active and stable over a wide range of pH values (6.5-9.5) and temperatures (10-40°C), with the highest specific activity, of 1500 U mg(-1), being obtained at pH 7.5 at 30°C. It also had high specific activities against tributyrin, tricaprylin and triolein, with values of 1852, 1566 and 817 U mg(-1), respectively. A phylogenetic analysis placed LipG9 in the lipase subfamily I.1. A comparison of the sequence of LipG9 with those of other bacterial lipases in the Protein Data Bank showed that LipG9 contains not only the classic catalytic triad (Ser(103), Asp(250), His(272)), with the catalytic Ser occurring within a conserved pentapeptide, Gly-His-Ser-His-Gly, but also a conserved disulfide bridge and a conserved calcium binding site. The homology-modeled structure presents a canonical α/ß hydrolase folding type I. CONCLUSIONS: This paper is the first to report the successful co-expression of a lipase and its associated foldase from a metagenomic library. The high activity and stability of Lip-LifG9 suggest that it has a good potential for use in biocatalysis.


Assuntos
Aeromonas , Proteínas de Bactérias , Expressão Gênica , Metagenoma , Aeromonas/enzimologia , Aeromonas/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Lipase , Metagenômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
Biochim Biophys Acta ; 1824(2): 359-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22154803

RESUMO

The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qß replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the ß-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted ß-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution.


Assuntos
Herbaspirillum/química , Fator Proteico 1 do Hospedeiro/química , Chaperonas Moleculares/química , Sequência de Aminoácidos , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Histidina/química , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo
17.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(3): 559-568, May-June 2011. graf, tab
Artigo em Inglês | LILACS | ID: lil-591195

RESUMO

In this work, glucoamylase was produced by Aspergillus niger in solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and ion exchange and gel filtration chromatographies. Its molecular mass was estimated as 118.17 kDa by electrophoresis. The partially purified enzyme had an optimum pH range of 4.5-5.0 and an optimum temperature of 60 °C, with average activity 152.85 U mL-1. Thermal and pH stability assays with the crude extract showed that more than 60 percent of the activity remained at pH 4.6 and 60 °C, even after an exposition to these conditions longer than 24 h. Yet, after purification, the enzyme was stable at these for at least 4 h, which indicated that its purification for use in starch saccharification was inadvisable. K M and Vmax were 0.34 mg mL-1 and 160.22 U mL-1, respectively.

18.
J Med Chem ; 53(1): 221-9, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19916554

RESUMO

Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Oxirredutases/antagonistas & inibidores , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Domínio Catalítico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
19.
PLoS One ; 4(11): e8006, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19956631

RESUMO

BACKGROUND: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. METHODOLOGY: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 A resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. CONCLUSION: The structure of AaegOBP1 ( = AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this "lid" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.


Assuntos
Aedes/metabolismo , Receptores Odorantes/química , Receptores Odorantes/fisiologia , Animais , Dicroísmo Circular , Cristalização , Cristalografia por Raios X/métodos , Dimerização , Dissulfetos , Concentração de Íons de Hidrogênio , Insetos , Modelos Moleculares , Conformação Molecular , Polietilenoglicóis/química , Conformação Proteica , Estrutura Terciária de Proteína
20.
Artigo em Inglês | MEDLINE | ID: mdl-19407374

RESUMO

Two crystal structures of recombinant Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase (Gs6PDH) in complex with the substrate 6-phosphogluconate have been determined at medium resolution. Gs6PDH shares significant sequence identity and structural similarity with the enzymes from Lactococcus lactis, sheep liver and the protozoan parasite Trypanosoma brucei, for which a range of structures have previously been reported. Comparisons indicate that amino-acid sequence conservation is more pronounced in the two domains that contribute to the architecture of the active site, namely the N-terminal and C-terminal domains, compared with the central domain, which is primarily involved in the subunit-subunit associations required to form a stable dimer. The active-site residues are highly conserved, as are the interactions with the 6-phosphogluconate. There is interest in 6PDH as a potential drug target for the protozoan parasite T. brucei, the pathogen responsible for African sleeping sickness. The recombinant T. brucei enzyme has proven to be recalcitrant to enzyme-ligand studies and a surrogate protein might offer new opportunities to investigate and characterize 6PDH inhibitors. The high degree of structural similarity, efficient level of expression and straightforward crystallization conditions mean that Gs6PDH may prove to be an appropriate model system for structure-based inhibitor design targeting the enzyme from Trypanosoma species.


Assuntos
Geobacillus stearothermophilus/enzimologia , Gluconatos/química , Gluconatos/metabolismo , Fosfogluconato Desidrogenase/química , Fosfogluconato Desidrogenase/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Geobacillus stearothermophilus/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Fosfogluconato Desidrogenase/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA