Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(47): e2304624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707242

RESUMO

Understanding the emergent electronic structure in twisted atomically thin layers has led to the exciting field of twistronics. However, practical applications of such systems are challenging since the specific angular correlations between the layers must be precisely controlled and the layers have to be single crystalline with uniform atomic ordering. Here, an alternative, simple, and scalable approach is suggested, where nanocrystallinetwo-dimensional (2D) film on 3D substrates yields twisted-interface-dependent properties. Ultrawide-bandgap hexagonal boron nitride (h-BN) thin films are directly grown on high in-plane lattice mismatched wide-bandgap silicon carbide (4H-SiC) substrates to explore the twist-dependent structure-property correlations. Concurrently, nanocrystalline h-BN thin film shows strong non-linear second-harmonic generation and ultra-low cross-plane thermal conductivity at room temperature, which are attributed to the twisted domain edges between van der Waals stacked nanocrystals with random in-plane orientations. First-principles calculations based on time-dependent density functional theory manifest strong even-order optical nonlinearity in twisted h-BN layers. This work unveils that directly deposited 2D nanocrystalline thin film on 3D substrates could provide easily accessible twist-interfaces, therefore enabling a simple and scalable approach to utilize the 2D-twistronics integrated in 3D material devices for next-generation nanotechnology.

2.
ACS Appl Mater Interfaces ; 15(33): 39980-39988, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555428

RESUMO

Diamond surface functionalization has received significant research interest recently. Specifically, H-termination has been widely adopted because it endows the diamond surface with negative electron affinity and the hole carrier is injected in the presence of surface transfer dopants. Exploring different functional groups' attachment on diamond surfaces and their impact on the electronic structure, using wet and dry chemical approaches, would hence be of interest in engineering diamond as a semiconductor. Here, we report the functionalization of the H-terminated diamond surface with nitrogen and sulfur heteroatoms. Surface characterization of functionalized diamond surfaces shows that these groups are well-distributed and covalently bonded to diamonds. Four chemical functional groups (-SH, -S-S-, -S-O, and -S=O) were found on the sulfurized diamond surface, and two groups (-NH2 and =NH) upon amination. We also report co-functionalization of surface with N and S (N-S), where sulfurization promotes sequential amination efficiency with reduced exposure time. Electrical measurement shows that heteroatom-modified diamond surfaces possess higher conductivity than H-terminated diamonds. Density functional theory (DFT) shows that upon functionalization with various N/S ratios, the conduction band minimum and valence band maximum downshift, which lowers the bandgap in comparison to an H-terminated diamond. These observations suggest the possibility of heteroatom functionalizations with enhanced surface electrical conductivity on the diamond that are useful for various electronic applications.

3.
Nano Lett ; 23(15): 6927-6936, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489836

RESUMO

Boron nitride (BN) is an exceptional material, and among its polymorphs, two-dimensional (2D) hexagonal and three-dimensional (3D) cubic BN (h-BN and c-BN) phases are most common. The phase stability regimes of these BN phases are still under debate, and phase transformations of h-BN/c-BN remain a topic of interest. Here, we investigate the phase stability of 2D/3D h-BN/c-BN nanocomposites and show that the coexistence of two phases can lead to strong nonlinear optical properties and low thermal conductivity at room temperature. Furthermore, spark-plasma sintering of the nanocomposite shows complete phase transformation to 2D h-BN with improved crystalline quality, where 3D c-BN possibly governs the nucleation and growth kinetics. Our demonstration might be insightful in phase engineering of BN polymorph-based nanocomposites with desirable properties for optoelectronics and thermal energy management applications.

4.
Nanoscale Horiz ; 8(5): 641-651, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36880586

RESUMO

The room temperature growth of two-dimensional van der Waals (2D-vdW) materials is indispensable for state-of-the-art nanotechnology. Low temperature growth supersedes the requirement of elevated growth temperatures accompanied with high thermal budgets. Moreover, for electronic applications, low or room temperature growth reduces the possibility of intrinsic film-substrate interfacial thermal diffusion related deterioration of the functional properties and the consequent deterioration of the device performance. Here, we demonstrated the growth of ultrawide-bandgap boron nitride (BN) at room temperature by using the pulsed laser deposition (PLD) process, which exhibited various functional properties for potential applications. Comprehensive chemical, spectroscopic and microscopic characterizations confirmed the growth of ordered nanosheet-like hexagonal BN (h-BN). Functionally, the nanosheets show hydrophobicity, high lubricity (low coefficient of friction), and a low refractive index within the visible to near-infrared wavelength range, and room temperature single-photon quantum emission. Our work unveils an important step that brings a plethora of potential applications for these room temperature grown h-BN nanosheets as the synthesis can be feasible on any given substrate, thus creating a scenario for "h-BN on demand" under a frugal thermal budget.

5.
Phys Rev Appl ; 19(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716475

RESUMO

We measure electron- and nuclear-spin transition frequencies in the ground state of nitrogen-vacancy (N-V) centers in diamond for two nitrogen isotopes (14N-V and 15N-V) over temperatures ranging from 77 to 400 K. Measurements are performed using Ramsey interferometry and direct optical readout of the nuclear and electron spins. We extract coupling parameters Q (for 14N-V), D, A‖, A⊥, and γe/γn, and their temperature dependences for both isotopes. The temperature dependences of the nuclear-spin transitions within the ms=0 spin manifold near room temperature are found to be 0.52(1) ppm/K for 14N-V(|mI = -1⟩ ↔ |mI = +1⟩) and -1.1(1) ppm/K for 15N-V(|mI = -1/2⟩ ↔ |mI = +1/2⟩). An isotopic shift in the zero-field splitting parameter D between 14N-V and 15N-V is measured to be ~ 120 kHz. Residual transverse magnetic fields are observed to shift the nuclear-spin transition frequencies, especially for 15N-V. We have precisely determined the set of parameters relevant for the development of nuclear-spin-based diamond quantum sensors with greatly reduced sensitivity to environmental factors.

6.
Sci Adv ; 7(43): eabl3840, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678066

RESUMO

We demonstrate the operation of a rotation sensor based on the nitrogen-14 (14N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/s (13 mHz/Hz), with a bias stability of 0.4 °/s (1.1 mHz).

7.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561916

RESUMO

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

8.
Sci Rep ; 8(1): 3342, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463823

RESUMO

We report on optimisation of the environmental stability and high temperature operation of surface transfer doping in hydrogen-terminated diamond using MoO3 and V2O5 surface acceptor layers. In-situ annealing of the hydrogenated diamond surface at 400 °C was found to be crucial to enhance long-term doping stability. High temperature sheet resistance measurements up to 300 °C were performed to examine doping thermal stability. Exposure of MoO3 and V2O5 transfer-doped hydrogen-terminated diamond samples up to a temperature of 300 °C in ambient air showed significant and irreversible loss in surface conductivity. Thermal stability was found to improve dramatically however when similar thermal treatment was performed in vacuum or in ambient air when the oxide layers were encapsulated with a protective layer of hydrogen silsesquioxane (HSQ). Inspection of the films by X-ray diffraction revealed greater crystallisation of the MoO3 layers following thermal treatment in ambient air compared to the V2O5 films which appeared to remain amorphous. These results suggest that proper encapsulation and passivation of these oxide materials as surface acceptor layers on hydrogen-terminated diamond is essential to maximise their environmental and thermal stability.

9.
2d Mater ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-38616955

RESUMO

A promising approach for high speed and high power electronics is to integrate two-dimensional (2D) materials with conventional electronic components such as bulk (3D) semiconductors and metals. In this study we explore a basic integration step of inserting a single monolayer MoS2 (1L-MoS2) inside a Au/p-GaN junction and elucidate how it impacts the structural and electrical properties of the junction. Epitaxial 1L-MoS2 in the form of 1-2 µm triangle domains are grown by powder vaporization on a p-doped GaN substrate, and the Au capping layer is deposited by evaporation. Transmission electron microscopy (TEM) of the van der Waals interface indicates that 1L-MoS2 remained distinct and intact between the Au and GaN and that the Au is epitaxial to GaN only when the 1L-MoS2 is present. Quantitative TEM analyses of the van der Waals interfaces are performed and yielded the atomic plane spacings in the heterojunction. Electrical characterization of the all-epitaxial, vertical Au/1L-MoS2/p-GaN heterojunctions enables the derivations of Schottky barrier heights (SBH) and drawing of the band alignment diagram. Notably, 1L-MoS2 appears to be electronically semi-transparent, and thus can be considered as a modifier to the Au contact rather than an independent semiconductor component forming a pn-junction. The I-V analysis and our first principles calculation indicated Fermi level pinning and substantial band bending in GaN at the interface. Lastly, we illustrate how the depletion regions are formed in a bipolar junction with an ultrathin monolayer component using the calculated distribution of the charge density across the Au/1L-MoS2/GaN junction.

10.
Nanoscale ; 10(1): 336-341, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29215125

RESUMO

Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS2/WSe2 on GaN with atomically sharp interface. Monolayer MoS2/WSe2/n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

11.
ACS Nano ; 10(3): 3580-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26866442

RESUMO

When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 µm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 µm in diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA