Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicon X ; 19: 100168, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37483846

RESUMO

Brevetoxins (BTX) are a group of marine neurotoxins produced by the harmful alga Karenia brevis. Numerous studies have shown that BTX are rapidly accumulated and metabolized in shellfish and mammals. However, there are only limited data on BTX metabolism in fish, despite growing evidence that fish serve as vectors for BTX transfer in marine food webs. In this study, we aimed to investigate the in vitro biotransformation of BTX-2, the major constituent of BTX profiles in K. brevis, in several species of northern Gulf of Mexico fish. Metabolism assays were performed using hepatic microsomes prepared in-house as well as commercially available human microsomes for comparison, focusing on phase I reactions mediated by cytochrome P450 monooxygenase (CYP) enzymes. Samples were analyzed by UHPLC-HRMS(/MS) to monitor BTX-2 depletion and characterize BTX metabolites based on MS/MS fragmentation pathways. Our results showed that both fish and human liver microsomes rapidly depleted BTX-2, resulting in a 72-99% reduction within 1 h of incubation. We observed the simultaneous production of 22 metabolites functionalized by reductions, oxidations, and other phase I reactions. We were able to identify the previously described congeners BTX-3 and BTX-B5, and tentatively identified BTX-9, 41,43-dihydro-BTX-2, several A-ring hydrolysis products, as well as several novel metabolites. Our results confirmed that fish are capable of similar BTX biotransformation reactions as reported for shellfish and mammals, but comparison of metabolite formation across the tested species suggested considerable interspecific variation in BTX-2 metabolism potentially leading to divergent BTX profiles. We additionally observed non-enzymatic formation of BTX-2 and BTX-3 glutathione conjugates. Collectively, these findings have important implications for determining the ecotoxicological fate of BTX in marine food webs.

2.
Metabolites ; 13(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367928

RESUMO

Fish are exposed to xenobiotics in the water. Uptake occurs mainly through the gills, which function as an exchange point with the environment. The gills' ability to detoxify harmful compounds by biotransformation is an essential protection mechanism. The enormous numbers of waterborne xenobiotics requiring ecotoxicological assessment makes it necessary to replace in vivo fish studies with predictive in vitro models. Here, we have characterized the metabolic capacity of the ASG-10 gill epithelial cell line from Atlantic salmon. Inducible CYP1A expression was confirmed by enzymatic assays and immunoblotting. The activities of important cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes were established using specific substrates and metabolite analysis by liquid chromatography (LC) triple quadrupole mass spectrometry (TQMS). Metabolism of the fish anesthetic benzocaine (BZ) in ASG-10 confirmed esterase and acetyl transferase activities through the production of N-acetylbenzocaine (AcBZ), p-aminobenzoic acid (PABA) and p-acetaminobenzoic acid (AcPABA). Moreover, we were able to determine hydroxylamine benzocaine (BZOH), benzocaine glucuronide (BZGlcA) and hydroxylamine benzocaine glucuronide (BZ(O)GlcA) by LC high-resolution tandem mass spectrometry (HRMS/MS) fragment pattern analysis for the first time. Comparison to metabolite profiles in hepatic fractions, and in plasma of BZ-euthanized salmon, confirmed the suitability of the ASG-10 cell line for investigating biotransformation in gills.

3.
Chemosphere ; 330: 138659, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044143

RESUMO

Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Ciguatoxinas/toxicidade , Região do Caribe , Peixes
4.
Food Chem ; 370: 131006, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509144

RESUMO

The contents and profiles of small molecules in a food can provide information about quality-related properties. Processing methods and deterioration during storage, e.g. from bacterial proliferation and degradation, might also lead to changes in the metabolome, which can be determined by mass spectrometry-based metabolomics. By measuring as many metabolites as possible in differently treated pre-cooked chicken fillets in an untargeted approach, we studied individual and combined effects of vacuum packaging (VP), soluble gas stabilisation (SGS), high pressure processing (HPP), and microwave volumetric heating (MW) on the quality and shelf-life of the finished product. The extensive dataset was processed using an optimised workflow of consecutive software tools with stringent statistical analysis to prevent over-interpretation, which is an inherent risk of metabolomics data. Our results showed the predominant influence of VP on storage quality since SGS, HPP, and MW did not have the potential to extent shelf-life.


Assuntos
Galinhas , Culinária , Animais , Embalagem de Alimentos , Metabolômica , Controle de Qualidade , Fluxo de Trabalho
5.
Foods ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34945618

RESUMO

Fresh baby spinach leaves are popular in salads and are sold as chilled and plastic-packed products. They are of high nutritional value but very perishable due to microbial contamination and enzymatic browning resulting from leaf senescence. Therefore, innovative food processing methods such as plasma-activated water (PAW) treatment are being explored regarding their applicability for ensuring food safety. PAW's impact on food quality and shelf-life extension has, however, not been investigated extensively in vegetables so far. In the present study, a comprehensive metabolomic analysis was performed to determine possible changes in the metabolite contents of spinach leaves stored in a refrigerated state for eight days. Liquid chromatography high-resolution mass spectrometry, followed by stringent biostatistics, was used to compare the metabolomes in control, tap-water-rinsed or PAW-rinsed samples. No significant differences were discernible between the treatment groups at the beginning or end of the storage period. The observed loss of nutrients and activation of catabolic pathways were characteristic of a transition into the senescent state. Nonetheless, the presence of several polyphenolic antioxidants and γ-linolenic acid in the PAW-treated leaves indicated a significant increase in stress resistance and health-promoting antioxidant capacity in the sample. Furthermore, the enhancement of carbohydrate-related metabolisms indicated a delay in the senescence development. These findings demonstrated the potential of PAW to benefit food quality and the shelf-life of fresh spinach leaves.

6.
Life (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685426

RESUMO

Although circulating microRNAs (miRNAs) in maternal blood may play an important role in regulation of pregnancy progression and serve as non-invasive biomarkers for different gestation complications, little is known about their profile in blood during normally developing pregnancy. In this study we evaluated the miRNA profiles in paired plasma and serum samples from pregnant women without health or gestational abnormalities at three time points using high-throughput sequencing technology. Sequencing revealed that the percentage of miRNA reads in plasma and serum decreased by a third compared to first and second trimesters. We found two miRNAs in plasma (hsa-miR-7853-5p and hsa-miR-200c-3p) and 10 miRNAs in serum (hsa-miR-203a-5p, hsa-miR-495-3p, hsa-miR-4435, hsa-miR-340-5p, hsa-miR-4417, hsa-miR-1266-5p, hsa-miR-4494, hsa-miR-134-3p, hsa-miR-5008-5p, and hsa-miR-6756-5p), that exhibit level changes during pregnancy (p-value adjusted < 0.05). In addition, we observed differences for 36 miRNAs between plasma and serum (p-value adjusted < 0.05), which should be taken into consideration when comparing the results between studies performed using different biosample types. The results were verified by analysis of three miRNAs using qRT-PCR (p < 0.05). The present study confirms that the circulating miRNA profile in blood changes during gestation. Our results set the basis for further investigation of molecular mechanisms, involved in regulation of pregnancy, and the search for biomarkers of gestation abnormalities.

7.
Chem Res Toxicol ; 34(8): 1910-1925, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34319092

RESUMO

Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.


Assuntos
Ciguatoxinas/metabolismo , Peixes/metabolismo , Glucuronídeos/metabolismo , Animais , Biotransformação , Região do Caribe , Ciguatera/etiologia , Ciguatera/metabolismo , Cadeia Alimentar , Humanos , Microssomos Hepáticos/metabolismo , Ratos Wistar , Alimentos Marinhos/intoxicação
8.
Metabolites ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35050150

RESUMO

Mucous membranes such as the gill and skin mucosa in fish protect them against a multitude of environmental factors. At the same time, changes in the molecular composition of mucus may provide valuable information about the interaction of the fish with their environment, as well as their health and welfare. In this study, the metabolite profiles of the plasma, skin and gill mucus of freshwater Atlantic salmon (Salmo salar) were compared using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Several normalization procedures aimed to reduce unwanted variation in the untargeted data were tested. In addition, the basal metabolism of skin and gills, and the impact of the anesthetic benzocaine for euthanisation were studied. For targeted metabolomics, the commercial AbsoluteIDQ p400 HR kit was used to evaluate the potential differences in metabolic composition in epidermal mucus as compared to the plasma. The targeted metabolomics data showed a high level of correlation between different types of biological fluids from the same individual, indicating that mucus metabolite composition could be used for fish health monitoring and research.

9.
Toxins (Basel) ; 12(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008105

RESUMO

This study determined the presence, levels and co-occurrence of mycotoxins in fish feeds in Kenya. Seventy-eight fish feeds and ingredients were sampled from fish farms and fish feed manufacturing plants and analysed for 40 mycotoxins using high-performance liquid chromatography-high resolution mass spectrometry. Twenty-nine (73%) mycotoxins were identified with 76 (97%) samples testing positive for mycotoxins presence. Mycotoxins with the highest prevalences were enniatin B (91%), deoxynivalenol (76%) and fumonisin B1 (54%) while those with the highest maximum levels were sterigmatocystin (<30.5-3517.1 µg/kg); moniliformin (<218.9-2583.4 µg/kg) and ergotamine (<29.3-1895.6 µg/kg). Mycotoxin co-occurrence was observed in 68 (87%) samples. Correlations were observed between the fumonisins; enniatins B and zearalenone and its metabolites. Fish dietary exposure estimates ranged between <0.16 and 43.38 µg/kg body weight per day. This study shows evidence of mycotoxin presence and co-occurrence in fish feeds and feed ingredients in Kenya. Fish exposure to these levels of mycotoxins over a long period of time may lead to adverse health effects due to their possible additive, synergistic or antagonist toxic effects. Measures to reduce fish feed mycotoxin contamination should be taken to avoid mycotoxicosis in fish and subsequently in humans and animals through residues.


Assuntos
Ração Animal/microbiologia , Peixes , Micotoxinas/análise , Alimentos Marinhos , Animais , Aquicultura , Cromatografia Líquida de Alta Pressão , Microbiologia de Alimentos , Abastecimento de Alimentos , Quênia , Espectrometria de Massas , Micotoxinas/toxicidade , Medição de Risco
10.
J Agric Food Chem ; 68(29): 7757-7764, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32584032

RESUMO

Juveniles are considered as one of the most vulnerable population groups concerning mycotoxins and their modified forms. The weaning stage is a particularly vulnerable period in the life of mammals, reflected in intestinal and immune dysfunction. The current study investigated the toxicokinetic (TK) characteristics of zearalenone (ZEN), zearalenone-14-glucoside (ZEN14G), and zearalenone-14-sulfate (ZEN14S) in weaned (4-week-old) piglets, by means of oral and intravenous administration of equimolar doses, i.e., 331, 500, and 415 µg/kg bodyweight, respectively. Plasma and urine were sampled pre- and post-administration and were quantitatively analyzed for ZEN, ZEN14G, ZEN14S, and in vivo metabolites by liquid chromatography-high-resolution mass spectrometry. Tailor-made TK models were elaborated to process data. A statistical comparison of the results was performed with TK data obtained in a previously reported study in pigs of 8 weeks of age. Additionally, porcine plasma protein binding was determined to support TK findings. The TK results for ZEN, ZEN14G, and ZEN14S, obtained in 4- and 8-week-old pigs, revealed significant age-related differences, based on differences in intestinal permeability, body fat content, gastrointestinal transit time, and biotransformation, with a special emphasis on an increased absorbed fraction of ZEN14G, i.e., 94 vs 61% in 4- compared to 8-week-old pigs. Since the growing pig has been reported to be a suitable pediatric animal model for humans concerning TK processes, these results may contribute to refine the risk assessment concerning modified ZEN forms in juvenile animals and humans.


Assuntos
Glucosídeos/farmacocinética , Suínos/sangue , Suínos/urina , Zearalenona/análogos & derivados , Zearalenona/farmacocinética , Fatores Etários , Animais , Feminino , Glucosídeos/sangue , Glucosídeos/toxicidade , Glucosídeos/urina , Masculino , Sulfatos/sangue , Sulfatos/toxicidade , Sulfatos/urina , Suínos/crescimento & desenvolvimento , Toxicocinética , Zearalenona/sangue , Zearalenona/toxicidade , Zearalenona/urina
11.
Toxins (Basel) ; 12(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375391

RESUMO

The tremorgenic mycotoxin penitrem A is produced by Penicillium species as a secondary metabolite on moldy food and feed. Dogs are sometimes exposed to penitrem A by consumption of spoiled food waste or fallen fruit. The lipophilic toxin crosses the blood-brain barrier and targets neuroreceptors and neurotransmitter release mechanisms in the central and peripheral nervous systems. Typical symptoms of penitrem A intoxication are periodical or continuous tremors, which can be passing, persistent or lethal, depending on the absorbed dose. There is presently no information on the biotransformation and toxicokinetics of penitrem A in dogs. The aim of the present study was therefore to identify potential metabolites of the toxin by performing in vitro biotransformation assays in dog liver microsomes. Analyses by liquid chromatography coupled to high-resolution mass spectrometry led to the provisional identification of eleven penitrem A phase I metabolites, which were tentatively characterized as various oxidation products. Furthermore, elimination parameters determined in in vitro assays run under linear kinetics were used for in vitro-to-in vivo extrapolation of the toxicokinetic data, predicting a maximal bioavailability of more than 50%. The metabolite profile detected in the in vitro assays was similar to that observed in the plasma of an intoxicated dog, confirming the predictive capability of the in vitro approach.


Assuntos
Micotoxinas/farmacocinética , Animais , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Cães , Desintoxicação Metabólica Fase I , Micotoxinas/administração & dosagem , Micotoxinas/sangue , Micotoxinas/intoxicação , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Toxicocinética
12.
Ecotoxicol Environ Saf ; 197: 110611, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294595

RESUMO

Efficient aquaculture is depending on sustainable protein sources. The shortage in marine raw materials has initiated a shift to "green aquafeeds" based on staple ingredients such as soy and wheat. Plant-based diets entail new challenges regarding fish health, product quality and consumer risks due to the possible presence of chemical contaminants, natural toxins and bioactive compounds like phytoestrogens. Daidzein (DAI), genistein (GEN) and glycitein (GLY) are major soy isoflavones with considerable estrogenic activities, potentially interfering with the piscine endocrine system and affecting consumers after carry-over. In this context, information on isoflavone biotransformation in fish is crucial for risk evaluation. We have therefore isolated hepatic fractions of Atlantic salmon (Salmo salar), the most important species in Norwegian aquaculture, and used them to study isoflavone elimination and metabolite formation. The salmon liver microsomes and primary hepatocytes were characterized with respect to phase I cytochrome P450 (CYP) and phase II uridine-diphosphate-glucuronosyltransferase (UGT) enzyme activities using specific probe substrates, which allowed comparison to results in other species. DAI, GEN and GLY were effectively cleared by UGT. Based on the measurement of exact masses, fragmentation patterns, and retention times in liquid chromatography high-resolution mass spectrometry, we preliminarily identified the 7-O-glucuronides as the main metabolites in salmon, possibly produced by UGT1A1 and UGT1A9-like activities. In contrast, the production of oxidative metabolites by CYP was insignificant. Under optimized assay conditions, only small amounts of mono-hydroxylated DAI were detectable. These findings suggested that bioaccumulation of phytoestrogens in farmed salmon and consumer risks from soy-containing aquafeeds are unlikely.


Assuntos
Hepatócitos/enzimologia , Fitoestrógenos/metabolismo , Salmo salar/metabolismo , Animais , Aquicultura , Biotransformação , Cromatografia Líquida , Genisteína/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Isoflavonas/metabolismo , Microssomos Hepáticos/enzimologia , Glycine max/química , UDP-Glucuronosiltransferase 1A
13.
Toxins (Basel) ; 12(4)2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260386

RESUMO

Cyanobacteria are cosmopolitan photosynthetic prokaryotes that can form dense accumulations in aquatic environments. They are able to produce many bioactive metabolites, some of which are potentially endocrine disrupting compounds, i.e., compounds that interfere with the hormonal systems of animals and humans. Endocrine disruptors represent potential risks to both environmental and human health, making them a global challenge. The aim of this study was to investigate the potential endocrine disrupting activities with emphasis on estrogenic effects of extracts from cultures of Microcystis or Planktothrix species. We also assessed the possible role of microcystins, some of the most studied cyanobacterial toxins, and thus included both microcystin-producing and non-producing strains. Extracts from 26 cyanobacterial cultures were initially screened in estrogen-, androgen-, and glucocorticoid-responsive reporter-gene assays (RGAs) in order to identify endocrine disruption at the level of nuclear receptor transcriptional activity. Extracts from selected strains were tested repeatedly in the estrogen-responsive RGAs, but the observed estrogen agonist and antagonist activity was minor and similar to that of the cyanobacteria growth medium control. We thus focused on another, non-receptor mediated mechanism of action, and studied the 17ß-estradiol (natural estrogen hormone) biotransformation in human liver microsomes in the presence or absence of microcystin-LR (MC-LR), or an extract from the MC-LR producing M. aeruginosa PCC7806 strain. Our results show a modulating effect on the estradiol biotransformation. Thus, while 2-hydroxylation was significantly decreased following co-incubation of 17ß-estradiol with MC-LR or M. aeruginosa PCC7806 extract, the relative concentration of estrone was increased.


Assuntos
Toxinas Bacterianas/toxicidade , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Estrogênios/farmacologia , Microcystis/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Planktothrix/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Biotransformação , Linhagem Celular Transformada , Disruptores Endócrinos/metabolismo , Estrogênios/metabolismo , Genes Reporter , Humanos , Cinética , Microssomos Hepáticos/enzimologia , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Medição de Risco
14.
Mycotoxin Res ; 36(1): 23-30, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31264166

RESUMO

The mycotoxin enniatin B1 (ENN B1) is widely present in grain-based feed and food products. In the present study, we have investigated how this lipophilic and ionophoric molecule can affect the lysosomal stability and chaperone-mediated autophagy (CMA) in wild-type (WT) and in lysosome-associated membrane proteins (LAMP)-1/2 double-deficient (DD) mouse embryonic fibroblasts (MEF). The cell viability and lysosomal pH were assessed using the Neutral Red (NR) cytotoxicity assay and the LysoSensor® Yellow/Blue DND-160, respectively. Changes in the expression of the CMA-related components LAMP-2 and the chaperones heat shock cognate (hsc) 70 and heat shock protein (hsp) 90 were determined in cytosolic extracts by immunoblotting. In the NR assay, LAMP-1/2 DD MEF cells were significantly less sensitive to ENN B1 than WT MEF cells after 24 h exposure to ENN B1 at levels of 2.5-10 µmol/L. Exposure to ENN B1 at concentrations below the half maximal effective concentration (EC50) (1.5-1.7 µmol/L) increased the lysosomal pH in WT MEF, but not in LAMP-1/2 DD cells, suggesting that lysosomal LAMP-2 is an early target of ENN B1-induced lysosomal alkalization and cytotoxicity in MEF cells. Additionally, cytosolic hsp90 and LAMP-2 levels slightly increased after exposure for 4 h, indicating lysosomal membrane permeabilization (LMP). In summary, it appeared that ENN B1 can destabilize the LAMP-2 complex in the lysosomal membrane at concentrations close to the EC50, resulting in the alkalinization of lysosomes, partial LMP, and thereby leakage of CMA-associated components into the cytosol.


Assuntos
Depsipeptídeos/toxicidade , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/patologia , Micotoxinas/toxicidade , Permeabilidade/efeitos dos fármacos , Animais , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Fibroblastos , Deleção de Genes , Proteínas de Choque Térmico HSC70/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Chaperonas Moleculares/efeitos dos fármacos , Chaperonas Moleculares/metabolismo
15.
Arch Toxicol ; 94(2): 417-425, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834428

RESUMO

Age-related differences in toxicokinetic processes of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3G) were studied. DON3G [55.7 µg/kg bodyweight (BW)] and an equimolar dose of DON (36 µg/kg BW) were administered to weaned piglets (4 weeks old) by single intravenous and oral administration in a double two-way cross-over design. Systemic and portal blood was sampled at different time points pre- and post-administration and plasma concentrations of DON, DON3G and their metabolites were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) methods. Data were processed using tailor-made compartmental toxicokinetic (TK) models to accurately estimate TK parameters. Results were statistically compared to data obtained in a previous study on 11-week-old pigs using identical experimental conditions. Significant age-related differences in intestinal and systemic exposure to both DON and DON3G were noted. Most remarkably, a significant difference was found for the absorbed fraction of DON3G, after presystemic hydrolysis to DON, in weaned piglets compared to 11-week-old piglets (83% vs 16%, respectively), assumed to be mainly attributed to the higher intestinal permeability of weaned piglets. Other differences in TK parameters could be assigned to a higher water/fat body ratio and longer gastrointestinal transit time of weaned piglets. Results may further refine current risk assessment concerning DON and DON3G in animals. Additionally, since piglets possibly serve as a human paediatric surrogate model, results may be extrapolated to human infants.


Assuntos
Glucosídeos/farmacocinética , Tricotecenos/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Feminino , Glucosídeos/administração & dosagem , Glucosídeos/toxicidade , Masculino , Suínos , Distribuição Tecidual , Tricotecenos/administração & dosagem , Tricotecenos/toxicidade , Desmame
16.
Chem Res Toxicol ; 33(2): 515-521, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31867960

RESUMO

Deoxynivalenol (DON) is a trichothecene mycotoxin that is produced by several species of Fusarium, which may infect grain crops. DON, as well as other type-B trichothecenes, contain an α,ß-unsaturated carbonyl group that may react with sulfhydryl groups in, for example, amino acids and peptides. Such conjugates have been shown to occur in plants. Nucleophilic addition of thiols to the conjugated double bond in DON afforded several isomeric reaction products, and the thermodynamically favored isomers of DON-10-cysteine and DON-10-glutathione have been prepared and characterized previously. This study reports the preparation and characterization of the kinetically favored DON-10-cysteine isomer. We subsequently studied and compared the rate of the deconjugation reaction of the two DON-10-cysteine isomers and the thermodynamically favored DON-10-glutathione adduct. The deconjugation rate of the thermodynamically favored thiol conjugates was slow with half-lives of weeks even at pH 10.7, while the kinetically favored DON-10-cysteine isomer deconjugated within a few hours, affording free DON. We adapted a simple and rapid oxidation protocol in which the sulfide linkage was oxidized to a sulfoxide or sulfone that, when treated with the base, rapidly eliminated the adducted thiol as its sulfenate or sulfinate to afford free DON. The deconjugation reactions of the sulfoxides and sulfones of thermodynamically favored DON-10-thiols were complete within hours or minutes at pH 10.7, respectively. The increase in deconjugation rates for the kinetically favored DON-10-cysteine were less dramatic. Oxidation of sulfides to sulfoxides is known to occur in vivo, and thus, our data show that thiol-conjugated DON might become bioavailable via sulfide oxidation followed by elimination to regenerate DON. The oxidation-elimination approach could also be useful for the indirect quantification of DON-10-thiol conjugates in plant and animal tissues.


Assuntos
Micotoxinas/química , Compostos de Sulfidrila/química , Tricotecenos/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Oxirredução
17.
Metabolites ; 9(8)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357617

RESUMO

Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes place via cytochrome P450 3A (CYP 3A)-dependent oxidation reactions. Possible interaction with ENNs is relevant since CYP3A4 is the main metabolic enzyme for numerous drugs and contaminants. In the present study, we have determined the kinetic characteristics and inhibitory potential of ENNB1 in human liver microsomes (HLM) and CYP3A4-containing nanodiscs (ND). We showed in both in vitro systems that ENNB1 is mainly metabolised by CYP3A4, producing at least eleven metabolites. Moreover, ENNB1 significantly decreased the hydroxylation rates of the typical CYP3A4-substrate midazolam (MDZ). Deoxynivalenol (DON), which is the most prevalent mycotoxin in grain and usually co-occurrs with the ENNs, was not metabolised by CYP3A4 or binding to its active site. Nevertheless, DON affected the efficiency of this biotransformation pathway both in HLM and ND. The metabolite formation rates of ENNB1 and the frequently used drugs progesterone (PGS) and atorvastatin (ARVS) lactone were noticeably reduced, which indicated a certain affinity of DON to the enzyme with subsequent conformational changes. Our results emphasise the importance of drug-drug interaction studies, also with regard to natural toxins.

18.
Arch Toxicol ; 93(7): 2087-2102, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065730

RESUMO

The mycotoxin deoxynivalenol (DON) has a high global prevalence in grain-based products. Biomarkers of exposure are detectable in most humans and farm animals. Considering the acute emetic and chronic anorexigenic toxicity of DON, maximum levels for food and feed have been implemented by food authorities. The tolerable daily intake (TDI) is 1 µg/kg body weight (bw)/day for the sum of DON and its main derivatives, which was based on the no-observed adverse-effect level (NOAEL) of 100 µg DON/kg bw/day for anorexic effects in rodents. Chronic exposure to a low-DON dose can, however, also cause inflammation and imbalanced neurotransmitter levels. In the present study, we therefore investigated the impact of a 2-week exposure at the NOAEL in mice by performing behavioural experiments, monitoring brain activation by c-Fos expression, and analysing changes in the metabolomes of brain and serum. We found that DON affected neuronal activity and innate behaviour in both male and female mice. Metabolite profiles were differentiable between control and treated mice. The behavioural changes evidenced at NOAEL reduce the safety margin to the established TDI and may be indicative of a risk for human health.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição Dietética/efeitos adversos , Fígado/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Encéfalo/metabolismo , Exposição Dietética/análise , Feminino , Contaminação de Alimentos/análise , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Comportamento de Nidação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tricotecenos/farmacocinética
19.
Toxins (Basel) ; 11(4)2019 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013949

RESUMO

New protein sources in fish feed require the assessment of the carry-over potential of contaminants and anti-nutrients from feed ingredients into the fish, and the assessment of possible health risks for consumers. Presently, plant materials including wheat and legumes make up the largest part of aquafeeds, so evaluation of the transfer capabilities of typical toxic metabolites from plant-infesting fungi and of vegetable phytoestrogens into fish products is of great importance. With the aim of facilitating surveillance of relevant mycotoxins and isoflavones, we have developed and validated a multi-analyte LC-HRMS/MS method that can be used to ensure compliance to set maximum levels in feed and fish. The method performance characteristics were determined, showing high specificity for all 25 targeted analytes, which included 19 mycotoxins and three isoflavones and their corresponding aglycons with sufficient to excellent sensitivities and uniform analytical linearity in different matrices. Depending on the availability of matching stable isotope-labelled derivates or similar-structure homologues, calibration curves were generated either by using internal standards or by matrix-matched external standards. Precision and recovery data were in the accepted range, although they varied between the different analytes. This new method was considered as fit-for-purpose and applied for the analysis of customised fish feed containing wheat gluten, soy, or pea protein concentrate as well as salmon and zebrafish fed on diets with these ingredients for a period of up to eight weeks. Only mycotoxin enniatin B, at a level near the limit of detection, and low levels of isoflavones were detected in the feed, demonstrating the effectiveness of maximum level recommendations and modern feed processing technologies in the Norwegian aquaculture industry. Consequently, carry-over into fish muscle was not observed, confirming that fillets from plant-fed salmon were safe for human consumption.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Micotoxinas/análise , Fitoestrógenos/análise , Salmão , Peixe-Zebra , Animais , Cromatografia Líquida , Glutens , Proteínas de Ervilha , Proteínas de Soja , Espectrometria de Massas em Tandem , Triticum
20.
J Agric Food Chem ; 67(12): 3448-3458, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30807145

RESUMO

The aim of this study was to determine the toxicokinetic characteristics of ZEN and its modified forms, α-zearalenol (α-ZEL), ß-zearalenol (ß-ZEL), zearalenone-14-glucoside (ZEN14G), and zearalenone-14-sulfate (ZEN14S), including presystemic and systemic hydrolysis in pigs. Crossover pig trials were performed by means of intravenous and oral administration of ZEN and its modified forms. Systemic plasma concentrations of the administered toxins and their metabolites were quantified and further processed via tailor-made compartmental toxicokinetic models. Furthermore, portal plasma was analyzed to unravel the site of hydrolysis, and urine samples were analyzed to determine urinary excretion. Results demonstrate complete presystemic hydrolysis of ZEN14G and ZEN14S to ZEN and high oral bioavailability for all administered compounds, with further extensive first-pass glucuronidation. Conclusively, the modified-ZEN forms α-ZEL, ß-ZEL, ZEN14G, and ZEN14S contribute to overall ZEN systemic toxicity in pigs and should be taken into account for risk assessment.


Assuntos
Micotoxinas/metabolismo , Suínos/metabolismo , Zearalenona/metabolismo , Zeranol/análogos & derivados , Animais , Disponibilidade Biológica , Biotransformação , Glucosídeos/química , Glucosídeos/metabolismo , Cinética , Masculino , Micotoxinas/química , Micotoxinas/toxicidade , Sulfatos/química , Sulfatos/metabolismo , Toxicocinética , Zearalenona/química , Zearalenona/toxicidade , Zeranol/química , Zeranol/metabolismo , Zeranol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA