Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 52: 100512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517353

RESUMO

PURPOSE: Plant-derived extracellular vesicles (EVs) have been reported to exert biological activity on intestinal tissues by delivering their contents into intestinal cells. We previously reported that ASBT/SLC10A2 mRNA was downregulated by apple-derived extracellular vesicles (APEVs). ASBT downregulation is effective in the treatment of cholestasis and chronic constipation, similar to the beneficial effects of apples. Therefore, this study aimed to establish the mechanism of ASBT downregulation by APEVs, focusing on microRNAs present in APEVs. RESULTS: APEVs downregulated the expression of ASBT, but no significant effect on SLC10A2-3'UTR was observed. Proteomics revealed that APEVs decreased the expression of RARα/NR1B1. The binding of RARα to SLC10A2 promoter was also decreased by APEVs. The stability of NR1B1 mRNA was attenuated by APEVs and its 3'UTR was found to be a target for APEVs. Apple microRNAs that were predicted to interact with NR1B1-3'UTR were present in APEVs, and their mimics suppressed NR1B1 mRNA expression. CONCLUSIONS: Suppression of ASBT by APEVs was indirectly mediated by the downregulation of RARα, and its stability was lowered by microRNAs present in APEVs. This study suggested that macromolecules in food directly affect intestinal function by means of EVs that stabilize them and facilitate their cellular uptake.


Assuntos
Vesículas Extracelulares , Malus , MicroRNAs , Simportadores , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Malus/genética , Malus/metabolismo , Regiões 3' não Traduzidas , Ácidos e Sais Biliares , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo
2.
ACS Omega ; 7(26): 22872-22878, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811861

RESUMO

One-pot gelation in capillary glass tubes with carbonate-based buffer solution allows the formation of hollow collagen gels (collagen tubes) with an outer diameter of 1 mm or less. The preparation conditions of collagen concentration, buffer concentration, and capillary diameter impacted the ratio and size of the hollow gel and allowed for morphological control of the cavity. The morphology of the hollows suggests that their vacancies are the result of macroscopic phase separation and pinning due to gelation. Mechanical strength measurements of the dried collagen gel tubes demonstrated that the collagen concentration determines their Young's modulus and maximum stress and that the material is strong enough for practical use. In vitro seeding studies of vascular endothelial cells demonstrated the possible formation of endothelial cells in layers in the gel lumen.

3.
Drug Metab Dispos ; 49(9): 803-809, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162689

RESUMO

Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/SLCO2B1 and that the 3'-untranslated region (3'UTR) is required for the response to APNPs. Here, we investigated the involvement of microRNAs (miRNAs) in APNPs in suppressing OATP2B1 expression to demonstrate that APNP macromolecules directly interact with intestinal tissues. Using in silico analysis, seven apple miRNAs were predicted as candidate miRNAs that interact with the SLCO2B1-3'UTR. The APNP-mediated decrease in luciferase activity of pGL3/SLCO2B1-3'UTR was abrogated by inhibitors of mdm-miR-160a-e, -7121a-c, or -7121d-h. Each miRNA mimic reduced the endogenous expression of SLCO2B1 mRNA in Caco-2 cells. The luciferase activity of the truncated pGL3/SLCO2B1-3'UTR, which contains approximately 200 bp around each miRNA recognition element (MRE), was decreased by the miR-7121d-h mimic but decreased little by the other mimics. APNP also reduced the luciferase activity of truncated pGL3/SLCO2B1-3'UTR containing an MRE for miR-7121d-h. Thus, we demonstrated that mdm-miR-7121d-h contributes to the APNP-mediated downregulation of intestinal OATP2B1. Accordingly, plant macromolecules, such as miRNAs, may directly interact with intestinal tissues via nanoparticles. SIGNIFICANCE STATEMENT: This study demonstrates that mdm-miR7121d-h contained in apple-derived nanoparticles downregulated the mRNA expression of SLCO2B1 by interacting with SLCO2B1-3'-untranslated region directly and that SLCO2B1 mRNA might also be decreased by mdm-miR160a-e and -7121a-c indirectly. This finding that the specific apple-derived microRNAs influence human intestinal transporters provides a novel concept that macromolecules in foods directly interact with and affect the intestinal function of the host.


Assuntos
Genes de Plantas/fisiologia , Intestinos , Malus , Transportadores de Ânions Orgânicos/metabolismo , Regiões 3' não Traduzidas , Células CACO-2 , Citoproteção , Regulação da Expressão Gênica de Plantas , Humanos , Intestinos/metabolismo , Intestinos/patologia , Malus/química , Malus/metabolismo , MicroRNAs , Nanopartículas/metabolismo , Compostos Fitoquímicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA