RESUMO
This paper analyses the key findings of a study devoted to PET-modified bitumen. The research program was run according to the D-optimal experimental plan based on a factorial design. Five factors, i.e., the type of polymer (source), the type of bitumen (qualitative factors), PET amount, mixing rate, and mixing temperature (quantitative factors), controlled the bitumen-polymer mixing process. The experiment included a series of determinations of bitumen's rheological characteristics obtained by MSCR (Jnr, R) and G*/sin(δ) at 50 °C, 60 °C, and 70 °C. The low-temperature properties of the composite (critical temperature) were evaluated using a BBR test. The findings showed that bitumen modification with PET primarily reduced the creep susceptibility of the bituminous-polymer mixture. The low-temperature characteristics of the modified bitumen played a secondary but essential role. The amount of polymer and the mixing rate interacted with the temperature, significantly reducing the stiffness of the composite, while the type and amount of bitumen had a substantial effect on the results obtained in the BBR test. It is worth noting that when combining bitumen and plastomer, special attention should be paid to ensuring a high level of homogeneity of the mixture by controlling the parameters of the mixing process accordingly. The tests and analyses provided crucial models (GLM), which allowed for the prediction of the plastomer-modified bitumen's low- and high-temperature properties. The resulting relationships between factors and the identification of their impact on the bitumen properties enable a better understanding of the process of bitumen modification with PET. The conclusions presented here serve as a basis for future optimisation of the modified bitumen composition. The performed studies indicate that the use of >3% plastomer in bitumen 70/100 allows for a reduction in its susceptibility (MSCR) to below 0.5 kPa-1, making it suitable for bituminous mixtures for high-traffic roads. No significant increase in critical temperature (BBR) was observed.
RESUMO
This paper presents the results of an analysis of the changes in the stiffness of asphalt binders modified with a bio-flux additive and subjected to the processes of foaming and short-term ageing. The purpose of the analyses was to determine changes in the rheological properties of asphalt binder as a result of technological processes characteristic of hot and warm mix asphalt technology. Three asphalt binders with similar penetration but varying degrees of polymer modification were tested: 50/70, 45/80-55 polymer-modified bitumen, and 45/80-80 highly modified bitumen. Tests were carried out on four groups of binders: original binders, foamed binders after 14 days of storage, non-foamed binders after Rolling Thin Film Oven Test (RTFOT) ageing, and foamed binders after 14 days of storage subjected to RTFOT ageing. The master curves of the complex shear modulus G* were analysed, and three indexes of binder stiffening were determined, characterising the investigated effects. The tests showed that some of the stiffening indices significantly depended on the degree of polymer modification and the content of the bio-flux additive. Moreover, it was found that the foaming process in the case of paving-grade bitumen and polymer-modified bitumen did not contribute to the additional stiffening of the binders.
RESUMO
The present paper investigates the viscoelastic stress-strain responses of laboratory and plant produced warm mix asphalt mixtures containing basalt fiber dispersed reinforcement. The investigated processes and mixture components were evaluated for their efficacy in producing highly performing asphalt mixtures with decreased mixing and compaction temperatures. Surface course asphalt concrete (AC-S 11 mm) and high modulus asphalt concrete (HMAC 22 mm) conventionally and using a warm mix asphalt technique with foamed bitumen and a bio-derived fluxing additive. The warm mixtures included lowered production temperature (by 10 °C) and lowered compaction temperatures (by 15 °C and 30 °C). The complex stiffness moduli of the mixtures were assessed under cyclic loading tests at combinations of four temperatures and five loading frequencies. It was found that the warm produced mixtures were characterized by lower dynamic moduli than the reference mixtures in the whole spectrum of loading conditions, however, the mixtures compacted at the 30 °C lower temperature performed better than the mixtures compacted at 15 °C lower temperature, specifically when highest testing temperatures are considered. The differences in the performance of plant and laboratory produced mixtures were ascertained to be nonsignificant. It was concluded that the differences in stiffness of hot mix and warm mixtures can be attributed to the inherent properties of foamed bitumen mixtures and that these differences should shrink in time.
RESUMO
The study investigated the effects of laboratory ageing on the fluxed and water-foamed asphalt binders in scope of Fourier transform infrared spectroscopic measurements of ageing indicators and changes in their chemical composition. The investigated binders included two paving grades, two polymer modified asphalt binders, and a highly modified asphalt binder. The bio-flux additive was produced from rapeseed methyl esters in an oxidation reaction in the presence of a metal catalyst and organic peroxide. The use of the bio-origin additive, in particular oil derivatives, was aimed at softening and better foaming of asphalt binders. This modification is possible due to the good mixability of vegetable oils with an asphalt binder, which gives a homogeneous product with reduced stiffness. The study involved the rolling thin film oven, short-term, and the pressure ageing vessel, long term, and ageing to induce oxidation on the evaluated asphalt binders. The addition of the bio-flux additive has significantly decreased the measured content of ketone compounds related to oxidation in both non-aged and aged asphalt binders, although this effect after ageing were far smaller in magnitude. Additionally, both ageing processes decreased significantly the absorbances in the ester spectral bands specific to the bio-flux additive. All mentioned effects were similar in magnitude in all tested asphalt binders.
RESUMO
The present paper investigates the effects of simultaneous mechanical foaming using water and fluxing with a bio-derived agent on the properties of three distinct asphalt binders: 50/70 paving-grade bitumen, 45/80-55 polymer-modified bitumen, and 45/80-80 highly modified asphalt binder. The testing involved classical tests for assessing binder consistency (penetration at 25 °C, ring and ball softening point, Fraass breaking point, and dynamic viscosity) as well as performance tests (high and low Superpave critical temperatures and multiple stress creep recovery). The tests included assessment directly after asphalt binder foaming and were repeated after a 14-day period. It was shown that bitumen foaming had only short-term effects on the asphalt binders, which did not persist in the repeated tests after 14 days. The fluxing agent that was utilized caused significant changes in the consistency of all asphalt binders. The changes in the performance characteristics of the 50/70 and 45/80-55 binders were severe and amounted to a significant decrease in high-temperature performance of these binders. On the other hand, an improvement in all performance characteristics in the case of the 45/80-80 asphalt binder was observed as a result of the applied processes, particularly when measured 14 days after foaming. This study shows that the simultaneous use of foaming and the fluxing additive decreased the dynamic viscosity of the 45/80-80 binder, while improving its properties relating the pavement performance.
RESUMO
The research was aimed at assessing the effect of the redispersible polymer powder on the fracture resistance of a subbase made of a mineral-cement mixture with a bitumen emulsion. The test was performed at two temperatures, i.e., 0 °C and 20 °C. The prepared mixtures differed in the content of cement, asphalt emulsion, and polymer modifier. Cement and redispersible polymer powder were dosed in 1.5% steps from 0.5% to 3.5% while the amount of bitumen emulsion ranged from 0.0% to 5.0%. The SCB (semi-circular bending) tests carried out in the laboratory showed the dependence of the influence of the amount of binder and polymer modifier on the fracture resistance of the recycled subbase. Mixes containing a polymer modifier in their composition are characterized by a much higher resistance to cracking than traditional mineral-cement-emulsion mixtures. An example is the doubling of the framework's fracture toughness (KIC) when the amount of the polymer modifier is increased from 0.5% to 2.0% with a constant cement content of 0.5%. The obtained results (KIC) in this case were 2.90 and 5.81. The key is the right ratio of polymer powder and cement in the base composition.
RESUMO
The deformation of the cold recycled mixture with foamed bitumen in a recycled base with an innovative three-component road binder and foamed bitumen is analysed. Numerical simulation results for the pavement constructed, based on laboratory test results, were verified against the data from the monitoring system installed on the road trial section. In addition, environmental effects, such as air temperature and humidity levels in the pavement structure layers, were considered. Thermal analyses were conducted to identify the thermal properties of the pavement materials under steady heat transfer rate. Determining temperature distribution in the road cross-section in combination with relaxation functions determined for individual pavement layers contributed to the high effectiveness of the numerical simulation of deformation and displacement in the recycled base and the entire pavement. The experimental method of identifying thermal properties allows a fast and satisfactory prediction of temperature distribution in the pavement cross-section.
RESUMO
The process of water-based foaming of bitumen produces binders that can be incorporated in cold recycled asphalt mixes and pavement upper structural layers made of half-warm mix asphalt prepared at 100-130 °C. During the foaming process, cold water and air act on hot bitumen (160-170 °C), which results in the explosive vaporization of water leading to changes in the binder structure. The impact of foaming on the properties of bitumen 70/100 was evaluated by investigating the binder characteristics before and after foaming. Determination of two foaming parameters, maximum expansion and half-life, was followed by measurements of penetration at 25 °C, softening point, Fraass breaking point, and dynamic viscosity at 60, 90, and 135 °C. Rheological and low-temperature tests were also performed before and after foaming bitumen 70/100. The Bending Beam Rheometer method was applied to determine the low temperature stiffness modulus. A DHR-2 rheometer was used to determine the dynamic modulus and phase angle of the tested binder. The Black and master curves before and after foaming were plotted in the 2S2P1D model and the model parameters were analysed. Analysis of the test results confirmed the effects of the foaming process on the basic, low-temperature, and rheological characteristics of the bitumen.
RESUMO
This article presents the test results for the physical and mechanical properties and fracture toughness of polymer-modified hydraulically-bound mixtures (HBM) produced with Portland cement for road base layers. The modifier used was a redispersible polymer powder (RPP) based on a vinyl ethylene acetate (EVA) copolymer obtained by spray drying. A three-level full factorial design with two factors was applied to determine the contents of Portland cement and polymer powder in the cement-bound mixture (CBM). Both Portland cement and polymer powder were added at three levels: 0%, 2%, and 4%. The assessment included basic physical properties (water absorption, density, and bulk density) and mechanical properties (stiffness modulus, axial compressive strength, and indirect tensile strength) of the CBM. Particular attention was paid to the assessment of fracture toughness in the semi-circular bending test. The results of the research show that polymer powder positively influenced the mechanical properties of CBM by improving its cohesion while maintaining its stiffness. Another benefit coming from the use of polymer powder was the CBM's increased resistance to cracking, which is the desired characteristic from the perspective of pavement durability.
RESUMO
The paper investigates the influence of redispersible polymer powder (RPP) on the physical and mechanical properties of a cold-recycled mixture with foamed bitumen (CRM-FB). Four types of RPP with a varied chemical base were used: VA-VeoVA, VA-VeoVa-Ac, EVA and VA/VV/E/Ac. The polymer powder-modified cold recycled mixture with foamed bitumen, (P)CRM-FB, was composed of 45.8% reclaimed asphalt pavement (RAP), 45.8% natural aggregate (VA), 3.0% Portland cement CEM I 42,5R, 3.0% foamed bitumen 50/70 and 3.0% RPP, all dosed by weight. The reference mixture, (R)CRM-FB, served as a reference point for comparison. It was found that RPP improved the workability of the CRM-FB mixture. This results in a reduced number of compaction cycles and lower energy needed to obtain the air void content as in the reference mixture. In addition, the RPP modifier markedly increased the CRM-FB mixture cohesion (ITSDRY) and strength, by approximately 40-70%, depending on the RPP used. These findings are particularly important for CRM-FB mixtures designed for road bases. The present investigations confirmed the improvement of the CRM-FB mixture parameters after the modification with RPP, regardless of the powder type used.
RESUMO
This article discusses the results of bitumen foam properties optimisation with respect to three factors: air pressure, bitumen temperature and amount of water. The test materials were unmodified bitumen 50/70 and bitumen 50/70 modified with 2.5% synthetic wax. The experiment was designed according to the 3(3-1) fractional factorial design. The distribution of parameters of bitumen foam were measured with the authors' original apparatus using a laser beam. This measurement method increased the accuracy of maximum expansion ratio (ER) and half-life (HL) estimation. Based on HL and ER results, it was found that the foaming process increased bitumen stiffness due to the dynamic ageing of the bitumen. The experimental design allows more effective control over the properties of foamed bitumen with respect to its intended use. The presence of synthetic wax extended the half-life of the bitumen foam.