Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Odontology ; 109(2): 464-473, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33141307

RESUMO

Periodontal disease is the most prevalent infectious disease, and inflammatory mediators play critical roles in its progression. Therefore, controlling pro-inflammatory cytokine production, especially at initial disease stages, is essential to maintaining gingival and periodontal health. Glycyrrhizin (GL) has an anti-inflammatory effect and has been added to toothpaste and mouth rinse to prevent periodontal disease. However, there is a maximum dose for the use of GL. The aim of the present study is to screen plant extracts which can effectively enhance the effects of GL. The effects of extracts from six different plants on GL-suppressed TNF-α expression in Aggregatibacter actinomycetemcomitans (A.a.)-LPS-stimulated human oral keratinocytes (RT7) were examined. Results demonstrated that Equisetum arvense (EA) extract had the strongest additive effect on the suppression of TNF-α by GL at both mRNA and protein levels. In addition, GL downregulated the production of TNF-α by suppressing NF-κB p65 phosphorylation, but not JNK or p38 phosphorylation. In contrast, EA decreased JNK phosphorylation but not NF-κB p65 or p38 phosphorylation. The combination of GL and EA effectively attenuated A.a.-LPS-induced phosphorylation of NF-κB p65 and JNK. Furthermore, an LPS-induced periodontitis rat model showed that GL with EA supplementation significantly downregulated TNF-α mRNA in the gingival tissue. These results indicate that EA can suppress A.a.-LPS-induced pro-inflammatory cytokine production by inhibiting JNK activation and can promote the anti-inflammatory effects of GL. Our findings suggest that a combination of GL and EA may improve the development of new oral hygiene products aimed at enhancing periodontal health.


Assuntos
Equisetum , Ácido Glicirrízico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Inflamação , Lipopolissacarídeos , NF-kappa B/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
2.
J Biosci Bioeng ; 97(1): 54-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16233589

RESUMO

Soil microorganisms play an important role in maintaining soil pH at levels suitable for other soil organisms. To clarify the biological neutralization mechanism in soil, we isolated soil microorganisms showing a high ability to neutralize acids and studied their characteristics. From our taxonomic study, three isolated strains were identified as filamentous fungi, namely Mucor sp., Aspergillus fumigatus, and Aureobasidium pullulans. These strains could secrete basic materials, such as ammonia, for neutralization, grow in the medium at pH 4.0 and increase the pH of the medium to approximately 8.0. These microbial cells could neutralize not only nitric acid but also sulfuric and hydrochloric acids. The strains could also grow by utilizing nitric acid as a sole nitrogen source. In the soil containing these organisms, the pH was maintained in the neutral range by the buffering action of basic materials that they secrete. These results suggest that these fungal cells are useful for protecting the soil from acidification by acid rain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA