RESUMO
This study investigated the suitability of surface modification for a long-range surface plasmon (LRSP) aptasensor using two different hydrogels, aiming at real-time monitoring of vancomycin (VCM) in undiluted serum and blood. Three different layer structures were formed on a gold surface of LRSP sensor chip using poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-N-methacryloyl-(L)-tyrosinemethylester (MAT)] (PMM) and poly[MPC-co-2-ethylhexyl methacrylate (EHMA)-co-MAT] (PMEM). The peptide aptamer for VCM was immobilized in PMM and PMEM via MAT. Among four differently prepared sensor chips, the LRSP hydrogel aptasensor with PMM, referred to as the PMM hydrogel, exhibited the highest sensor output and superior antifouling properties. Following the optimization of the PMM hydrogel preparation conditions, the shelf life of the PMM hydrogel was determined to exceed 2 weeks, and the same sensor chip could be used for 102 days without significant performance deterioration. The PMM hydrogel was then applied for VCM measurement in undiluted serum in vitro, where it demonstrated a limit of detection of 0.098 µM and a dynamic range of 0.18-100 µM, covering the therapeutic range. Additionally, the PMM hydrogel enabled the continuous measurement of various VCM concentrations in serum without rinsing and showed a concentration-dependent output in undiluted blood. These findings underscore the potential of the PMM hydrogel for real-time and direct monitoring of VCM in body fluids.
Assuntos
Hidrogéis , Ressonância de Plasmônio de Superfície , Vancomicina , Vancomicina/sangue , Vancomicina/química , Vancomicina/farmacologia , Humanos , Hidrogéis/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Aptâmeros de Peptídeos/química , Ouro/química , Aptâmeros de Nucleotídeos/química , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/farmacologia , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Metacrilatos/químicaRESUMO
Three-dimensional printing of cell constructs with high-cell density, shape fidelity, and heterogeneous cell populations is an important tool for investigating cell sociology in living tissues but remains challenging. Herein, we propose an artificial intercellular adhesion method using a photoresponsive chemical cue between a thiol-bearing polymer and a methacrylate-bearing cell membrane. This process provided cell fabrication containing 108 cells/mL, embedded multiple cell populations in one structure, and enabled millimeter-sized scaleup. Our approach allows for the artificial cell construction of complex structures and is a promising bioprinting strategy for engineering tissues that are structurally and physiologically relevant.
Assuntos
Bioimpressão , Compostos de Sulfidrila , Engenharia Tecidual/métodos , Hidrogéis/química , Impressão Tridimensional , Bioimpressão/métodosRESUMO
Enzyme-loaded spherical microgels with diameters of several micrometers have been explored for use in therapeutic microreactors and biosensors. Conventional preparation strategies for enzyme-loaded microgels utilized water-in-oil emulsions or flow chemistry techniques. The former damage enzyme activity using organic solvents and the latter are expensive and difficult to expand because of the complex system. In this study, we present a simple strategy for creating multiple enzyme-loaded gelatin-based microgels with tunable diameters in a single flask. This strategy was based on our finding that enzymes spontaneously partitioned in a dispersed methacryloyl gelatin aqueous solution in a poly(vinylpyrrolidone) (WGelMA/WPVP) aqueous solution. The method achieved an encapsulation efficiency of over 70% even with four types of enzymes and retained their activity owing to the full aqueous system. Additionally, the encapsulated ß-galactosidase activity was maintained for 24 hours at pH 6, although naked ß-galactosidase lost approximately 60% of its activity, which was superior to that of previous enzyme-loaded gelatin gels. Moreover, this simple method enabled the production of 10 g-scale or more microgels in one batch. We also demonstrated that multiple enzyme-loaded gelatin microgels functioned as cascade microreactors for lactose and glucose sensing. This versatile strategy enables the production of enzyme-loaded microgels while maintaining the enzyme activity using very low technologies. This result contributes to the easy preparation of enzyme-loaded microgels and their applications in the biomedical and green catalytic fields.
Assuntos
Microgéis , Emulsões , Água , Gelatina , Géis , beta-GalactosidaseRESUMO
Surface modification using zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers is commonly performed to fabricate interfaces that reduce nonspecific fouling by biomolecules and cells. Accordingly, several clinically used devices, such as guide wires, stents, oxygenators, left ventricular assist devices, and microcatheters have been modified using MPC polymers. The specific types of surface modifications vary across substrates and applications. Recently, photoreactions have garnered attention for surface modification due to their stability and tunability. This review highlights various studies that employed photoreactions to modify surfaces using MPC polymers, especially photoinduced graft polymerization of MPC. In addition to antifouling materials, several micromanipulated, long-lasting hydrophilic, and super antiwear surfaces are summarized. Furthermore, several photoreactive MPC polymers that can be used to control interactions between biomolecules and materials are presented along with their potential to form selective recognition surfaces that target biomolecules for biosensors and diagnostic devices.
Assuntos
Materiais Biocompatíveis , Fosforilcolina , Materiais Biocompatíveis/química , Fosforilcolina/química , Polímeros/química , Metacrilatos/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de SuperfícieRESUMO
Osteoporosis is a common bone disorder characterized by reduced bone density and increased risk of fractures. The modulation of bone cell functions, particularly the inhibition of osteoclastic differentiation, plays a crucial role in osteoporosis treatment. Polyphosphoesters (PPEs) have shown the potential in reducing the function of osteoclast cells, but the effect of their chemical structure on osteoclastic differentiation remains largely unexplored. In this study, we evaluated the effect of PPE's chemical structure on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells (BMNCs). PPEs containing phosphotriester and phosphodiester units at varying compositions were synthesized. Cytotoxicity testing confirmed the biocompatibility of the copolymers at concentrations below 0.5 mg/mL. Isolated from long bones, BMNCs were cultured in a differentiation medium supplemented with different PPE concentrations. Osteoclast formation was assessed through tartrate-resistant acid phosphatase and phalloidin staining. A significant decrease in the size of osteoclast cells formed upon BMNC contact with PPEs was observed, with a more pronounced effect observed at higher PPE concentrations. In addition, an increased composition of phosphodiester units in the PPEs yielded a decreased density of differentiated osteoclasts. Furthermore, real-time PCR analysis of major osteoclastic markers provided gene expression data that correlated with microscopic observations, confirming the effect of phosphodiester units in suppressing osteoclast differentiation of BMNCs from the early stages. These findings highlight the potential of PPEs as polymers are capable of modulating bone cell functions through their chemical structures.
Assuntos
Fosfatase Ácida , Osteoporose , Camundongos , Animais , Humanos , Fosfatase Ácida/análise , Fosfatase Ácida/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea , Osteoclastos , Diferenciação Celular , Células CultivadasRESUMO
The molecule 2-nonenal is renowned as the origin of unpleasant human aging-related body odor that can potentially indicate age-related metabolic changes. Most 2-nonenal measurements rely on chromatographic analytical systems, which pose challenges in terms of daily usage and the ability to track changes in concentration over time. In this study, we have developed liquid- and gas-phase biosensors (bio-sniffers) with the aim of enabling facile and continuous measurement of trans-2-nonenal vapor. Initially, we compared two types of nicotinamide adenine dinucleotide (phosphate) [NAD(P)]-dependent enzymes that have the catalytic ability of trans-2-nonenal: aldehyde dehydrogenase (ALDH) and enone reductase 1 (ER1). The developed sensor quantified the trans-2-nonanal concentration by measuring fluorescence (excitation: 340 nm, emission: 490 nm) emitted from NAD(P)H that was generated or consumed by ALDH or ER1. The ALDH biosensor reacted to a variety of aldehydes including trans-2-nonenal, whereas the ER1 biosensor showed high selectivity. In contrast, the ALDH bio-sniffer showed quantitative characteristics for trans-2-nonenal vapor at a concentration range of 0.4-7.5 ppm (with a theoretical limit of detection (LOD) and limit of quantification (LOQ) of 0.23 and 0.26 ppm, respectively), including a reported concentration (0.85-4.35 ppm), whereas the ER1 bio-sniffer detected only 0.4 and 0.8 ppm. Based on these findings, headspace gas of skin-wiped alcohol-absorbed cotton collected from study participants in their 20s and 50s was measured by the ALDH bio-sniffer. Consequently, age-related differences in signals were observed, suggesting the potential for measuring trans-2-nonenal vapor.
Assuntos
Técnicas Biossensoriais , NAD , Humanos , Odor Corporal , Aldeídos , Técnicas Biossensoriais/métodos , EnvelhecimentoRESUMO
Peptoids, or poly(N-substituted glycine)s, hold great promise in biomedical applications because of their biocompatibility, precise synthesis via conventional peptide-mimicking methods, and readily tunable side chains, which facilitate the control of hydrophobicity and crystallinity. In the past decade, peptoids have been used to create well-defined self-assemblies such as vesicles, micelles, sheets, and tubes, which have been scrutinized at the atomic scale using cutting-edge analytical techniques. This review highlights recent advancements in peptoid synthesis strategies and the development of noteworthy one- or two-dimensional anisotropic self-assemblies, i. e., nanotubes and nanosheets, exhibiting well-ordered molecular arrangements. These anisotropic self-assemblies are formed through the crystallization of peptoid side chains, which can be effortlessly modified via simple synthesis approaches. Moreover, leveraging the protease resistance of peptoids, various biomedical applications are discussed (including phototherapy, enzymatic mimetics, bio-imaging, and biosensing) that capitalize on the unique properties of anisotropic self-assembly.
Assuntos
Peptoides , Peptoides/química , Conformação MolecularRESUMO
Polymers for pharmaceutical use have been attractive in medical treatments because of the conjugation of multifunctional components and their long circulation time in the blood stream. Bone-targeted drug delivery systems are also no exceptional, and several polymers have been proposed for the treatment of bone diseases, such as cancer metastasis and osteoporosis. Herein, we report that polyphosphodiesters (PPDEs) have a potential to enhance osteoblastic differentiation, and they have a targeting ability to bone tissues in vivo. Two types of PPDEs, poly (ethylene sodium phosphate) (PEPâ¢Na) and poly (propylene sodium phosphate) (PPPâ¢Na), have been synthesized. Regardless of the alkylene structure in the main chain of PPDEs, the gene expression of osteoblast-specific transcription factors and differentiation markers of mouse osteoblastic-like cells (MC3T3-E1 cells) cultured in a differentiation medium was significantly upregulated by the addition of PPDEs. Moreover, it was also clarified that the signaling pathway related to cytoplasmic calcium ions was activated by PPDEs. The mineralization of MC3T3-E1 cells has a similar trend with its gene expression and is synergistically enhanced by PPDEs with ß-glycerophosphate. The biodistribution of fluorescence-labeled PPDEs was also determined after intravenous injection in mice. PPDEs accumulated well in the bone through the blood stream, whereas polyphosphotriesters (PPTEs) tended to be excreted from the kidneys. Hydrophilic PEPâ¢Na showed a superior bone affinity as compared with PPPâ¢Na. PPDEs could be candidate polymers for the restoration of bone remodeling and bone-targeting drug delivery platforms.
Assuntos
Osso e Ossos , Transdução de Sinais , Animais , Camundongos , Distribuição Tecidual , Diferenciação Celular , Osso e Ossos/metabolismo , OsteoblastosRESUMO
The blood compatibility of self-assembled monolayers (SAMs) of oligoproline, a nonionic antifouling peptide, was investigated using the cone-and-plate assay imitating arterial blood flow conditions. End-capped oligoprolines composed of 6 and 9 proline residues (Pro6 and Pro9) and a Cys residue were synthesized for preparing SAMs (Pro-SAMs) on Au-sputtered glass. The surface of Pro-SAMs indicated hydrophilic property with a smooth topology. The adsorption of blood components and the adhesion of blood cells, including leukocytes and platelets, were strongly suppressed on Pro-SAMs. Moreover, Pro9-SAM did not trigger the activation of platelets (i.e., the conformational change of GPIIb/IIIa and P-selectin (CD62P) expression on platelets and the formation of aggregates). Our results demonstrate that Pro9-SAM completely inhibited acute thrombogenic responses and the activation of platelets under dynamic conditions.
Assuntos
Plaquetas , Selectina-P , Adsorção , Prolina , Propriedades de SuperfícieRESUMO
Membrane proteins play essential roles in the cell, and they constitute one of the most important targets of drugs. Studying membrane proteins in a controlled model membrane environment can provide unambiguous, quantitative information on their molecular properties and functions. However, reconstituting membrane proteins in a model system poses formidable technological challenges. Here, we developed a novel model membrane platform for highly sensitive observation of membrane proteins by combining a micropatterned lipid membrane and a nanofluidic channel. A micropatterned model membrane was generated by lithographically integrating a polymerized lipid bilayer and a natural (fluid) lipid bilayer. A nanofluidic channel having a defined thickness was formed between the fluid bilayer and a polydimethylsiloxane (PDMS) slab by attaching the polymeric bilayer and PDMS slab using an adhesion layer composed of silica nanoparticles that are coated with a biocompatible polymer brush. As we reconstituted rhodopsin (Rh), a G-protein-coupled receptor (GPCR), from a detergent-solubilized state into the fluid bilayer, only successfully reconstituted Rh molecules diffused laterally in the lipid bilayer and migrated into the nanogap junction, where they could be observed with a vastly improved signal-to-background ratio. The nanogap junction effectively separates the sites of reconstitution and observation and provides a novel platform for studying the molecular properties and functions of membrane proteins at the single-molecular level.
Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Membranas/metabolismo , Polimerização , Polímeros , Rodopsina/metabolismoRESUMO
Well-defined pH-responsive biocompatible random copolymers composed of 2-(methacryloyloxy)ethyl phosphorylcholine and varying quantities of sodium 11-(acrylamido)undecanoate (AaU) (fAaU = 0-58 mol %) were synthesized via reversible addition-fragmentation chain transfer radical polymerization. The pH-responsive association and dissociation behavior of the random copolymers was studied via turbidity, 1H nuclear magnetic resonance relaxation time, dynamic light scattering, static light scattering (SLS), and fluorescence measurements. At basic pH levels, the random copolymers dissolved in water in a unimer state because the AaU units behaved in a hydrophilic manner as a result of the ionization of the pendent fatty acids. The random copolymers with fAaU < 52 mol % associated intramolecularly within a single polymer chain to form unimer micelles at pH 3 because of the protonation of the pendent fatty acids. On the other hand, the random copolymer with fAaU ≥ 52 mol % formed intermolecular aggregates composed of four polymer chains at pH 3, as established by the SLS measurements. The random copolymers displayed the ability to solubilize hydrophobic guest molecules, such as N-phenyl-1-naphthylamine, into the hydrophobic microdomain formed by the pendent dehydrated fatty acids at acidic pHs. At pH 4, 1-pyrememethanol is captured by the random copolymer with fAaU = 52 mol %, and it is released from the random copolymer above pH 9. Furthermore, the mucoadhesive properties of the random copolymer with fAaU = 9 mol % were studied using a surface plasmon resonance technique. The copolymer was adsorbed onto mucin at pH 3; however, the adsorption decreased at pH 7.4.
Assuntos
Ácidos Graxos , Fosforilcolina , Micelas , Fosforilcolina/química , Polimerização , Polímeros/químicaRESUMO
The provision of antibacterial properties to resinous restorative/reconstructive materials by incorporating polymerizable bactericides such as 12-methacryloyloxydodecylpyridinium bromide (MDPB) has been attempted. Previously, MDPB was combined with 2-methacryloyloxyethyl phosphorylcholine (MPC) to fabricate a copolymer coating to increase antibacterial effectiveness by protein repelling. In this study, we assessed the longevity of the protein-repelling, antibacterial, and antibiofilm effects of the MDPB-MPC copolymer. After 28 days of water immersion, MPC-containing copolymers exhibited lower adsorption of bovine serum albumin and salivary proteins; after 24 h of incubation, MDPB-containing copolymers demonstrated antibacterial effects against Streptococcus mutans. The copolymer containing both MDPB and MPC showed thinner biofilm formation with a higher percentage of membrane-compromised bacteria than control. The results were consistent with those before aging, indicating the long-lasting antibacterial, protein-repellent, and antibiofilm effects of this copolymer. The durable copolymer developed in this study can be applied to dental resins to control bacteria in the oral environment.
Assuntos
Biofilmes , Streptococcus mutans , Adsorção , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Metacrilatos/farmacologia , ProteínasRESUMO
Methanol (MeOH) in exhaled breath has potential for non-invasive assessment of intestinal flora. In this study, we have developed a biochemical gas sensor (bio-sniffer) for MeOH in the gas phase using fluorometry and a cascade reaction with two enzymes, alcohol oxidase (AOD) and formaldehyde dehydrogenase (FALDH). In the cascade reaction, oxidation of MeOH was initially catalyzed by AOD to produce formaldehyde, and then this formaldehyde was successively oxidized via FALDH catalysis together with reduction of oxidized form of ß-nicotinamide adenine dinucleotide (NAD+). As a result of the cascade reaction, reduced form of NAD (NADH) was produced, and MeOH vapor was measured by detecting autofluorescence of NADH. In the development of the MeOH bio-sniffer, three conditions were optimized: selecting a suitable FALDH for better discrimination of MeOH from ethanol in the cascade reaction; buffer pH that maximizes the cascade reaction; and materials and methods to prevent leaking of NAD+ solution from an AOD-FALDH membrane. The dynamic range of the constructed MeOH bio-sniffer was 0.32-20 ppm, which encompassed the MeOH concentration in exhaled breath of healthy people. The measurement of exhaled breath of a healthy subject showed a similar sensorgram to the standard MeOH vapor. These results suggest that the MeOH bio-sniffer exploiting the cascade reaction will become a powerful tool for the non-invasive intestinal flora testing.
Assuntos
Técnicas Biossensoriais , Microbioma Gastrointestinal , Testes Respiratórios , Formaldeído , Humanos , MetanolRESUMO
Phosphorus is a ubiquitous and one of the most common elements found in living organisms. Almost all molecules containing phosphorus in our body exist as analogs of phosphate salts or phosphoesters. Their functions are versatile and important, being responsible for forming the genetic code, cell membrane, and mineral components of hard tissue. Several materials inspired from these phosphorus-containing biomolecules have been recently developed. These materials have shown unique properties at the biointerface, such as nonfouling ability, blood compatibility, lubricity, mineralization induction capability, and bone affinity. Several unfavorable events occur at the interface of materials and living organisms because most of these materials have not been designed while taking host responses into account. These unfavorable events are directly linked to reducing functions and shorten the usable periods of medical devices. Biomimetic phosphorus-containing polymers can improve the reliability of materials in biological systems. In addition, phosphorus-containing biomimetic polymers are useful not only for improving the biocompatibility of material surfaces but also for adding new functions due to the flexibility in molecular design. In this review, we describe the recent advances in the control of biointerfacial phenomena with phosphorus-containing polymers. We especially focus on zwitterioninc phosphorylcholine polymers and polyphosphoesters.
RESUMO
Volatile organic compounds (VOCs) released through skin (transcutaneous gas) has been increasing in importance for the continuous and real-time assessment of diseases or metabolisms. For stable monitoring of transcutaneous gas, finding a body part with little interference on the measurement is essential. In this study, we have investigated the possibility of external ears for stable and real-time measurement of ethanol vapour by developing a monitoring system that consisted with an over-ear gas collection cell and a biochemical gas sensor (bio-sniffer). The high sensitivity with the broad dynamic range (26 ppb-554 ppm), the high selectivity to ethanol, and the capability of the continuous measurement of the monitoring system uncovered three important characteristics of external ear-derived ethanol with alcohol intake for the first time: there is little interference from sweat glands to a sensor signal at the external ear; similar temporal change in ethanol concentration to that of breath with delayed peak time (avg. 13 min); relatively high concentration of ethanol relative to other parts of a body (external ear-derived ethanol:breath ethanol = 1:590). These features indicated the suitability of external ears for non-invasive monitoring of blood VOCs.
Assuntos
Técnicas Biossensoriais , Monitorização Transcutânea dos Gases Sanguíneos , Gases/sangue , Compostos Orgânicos Voláteis/sangue , Álcool Desidrogenase/química , Consumo de Bebidas Alcoólicas , Testes Respiratórios , Orelha Externa/química , Enzimas Imobilizadas/química , Etanol/química , HumanosRESUMO
Poly(dimethylsiloxane) (PDMS) is known as one of the most established polymers for making elastomers. Therefore, it is commonly used for the fabrication of biomedical devices. Many PDMS surface modification processes have been proposed recently to increase PDMS reliability in medical fields. However, the modified surface's long-term stability is still limited. Hydrophobic recovery of PDMS is widely recognized as a factor that reduces the efficacy of PDMS surface modification. The photoreactive zwitterionic polymer effectively suppresses the hydrophobic recovery of PDMS, according to the current analysis. The photoreactive zwitterionic monomer, 2-[2-(Methacryloyloxy)ethyldimethylanmmonium] ethyl benzophenoxy phosphate (MBPP) was polymerized by conventional radical polymerization and coated on O2-plasma-treated PDMS specimens. The specimens were immersed in an aqueous solution of 2-methacryloyloxyethyl phosphorylcholine (MPC) and exposed under ultraviolet (UV) radiation for 3â¯h. Instead, of poly(MBPP) (PMBPP), benzophenone (BP) was also used as a conventional photoinitiator. The time-dependent change in the wettability and elemental composition of the specimen surface was monitored for nine weeks after photo-grafting of poly[2-methacryloyloxyethyl phosphorylcholine (MPC)] (PMPC). The advancing and receding contact angles (θA/θR) of the pristine PDMS specimen were 112°/71° and significantly decreased immediately after the grafting of PMPC regardless of types of photoinitiator. However, the hydrophobicity of the surface gradually recovered, and θA was changed from 12° to 81° for nine weeks of storage under air atmosphere when BP was used as a photoinitiator for graft polymerization of MPC. However, surface hydrophilicity (θA â 20°) of the surface grafted with PMPC with PMBPP as an initiator was effectively preserved for nine weeks. This surface also showed excellent lubricity and non-fouling properties regardless of the storage periods. Therefore, zwitterionic photoreactive polymer, PMBPP, is then used as a macrophotoinitiator for the surface modification of PDMS.
Assuntos
Polímeros , Siloxanas , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Fosforilcolina , Reprodutibilidade dos Testes , Propriedades de SuperfícieRESUMO
For understanding the status of intestinal flora non-invasively, methanol (MeOH) has been attracting the attention. In this study, we have developed and compared two different liquid-phase methanol biosensors. One, referred to as the AOD electrosensor, utilized alcohol oxidase (AOD) and an oxygen electrode. It electrochemically measured the decrease in oxygen through AOD-catalyzed oxidation of MeOH. The other, referred to as the AOD-FALDH fluorosensor, exploited a cascade reaction of AOD and formaldehyde dehydrogenase (FALDH) in conjunction with a fiber-optic sensor. It measured increase in the fluorescence from reduced form of ß-nicotinamide adenine dinucleotide (NADH) that was a final product of the two-enzyme cascade reaction. Due to the cascade reaction, the AOD-FALDH fluorosensor showed 3 times better sensitivity along with 335 times wider dynamic range (494 nM-100 mM) than those of the AOD electrosensor (1.5-300 µM). The selectivity to MeOH was also improved by the cascade reaction with AOD-FALDH as no sensor output was observed from other aliphatic alcohols than MeOH in contrast to the AOD electrosensor. Although the use of FALDH resulted in the increase in the sensor output from aldehydes, such as acetaldehyde and formaldehyde, considering their concentrations in body fluids, the influence on the sensor output is limited. These results indicate that incorporating the cascade reaction into fluorometry enables enhanced biosensing of MeOH that will be useful for assessment of intestinal flora with little burden.
Assuntos
Técnicas Biossensoriais , Metanol , Acetaldeído , Bactérias , FluorometriaRESUMO
Natural melanin affects the reflection and absorption of light, and it is known as an important element in producing bright structural colors in nature. In this study, we prepared core-shell particles using a melanin precursor polymer, that is, polytyrosine (PTy), as a shell layer by the oxidative polymerization of tyrosine ethyl ester (Ty) in the presence of cerium oxide (CeO2) core particles. Inspired by skin tanning, irradiating the CeO2@PTy core-shell particles with UV or natural sunlight caused melanization by extending the π-conjugated length of PTy, producing colloidal particles with the ability to absorb light. The pellet samples consisting of CeO2@PTy particles appeared whitish because of multiple scattered light. In contrast, the light absorption capacity of CeO2@PTy UV or CeO2@PTy Sun particles after light irradiation suppressed scattered light, dramatically improving the visibility of the structural color of the pellet samples made from these particles. Thus, a new method has been developed to control the visualization of structural colors to the human eye by irradiating the melanin precursor polymer with light.
Assuntos
Melaninas , Polímeros , Humanos , Polimerização , Luz SolarRESUMO
Low-environmental-impact emulsion systems for transdermal drug delivery in topical treatment have gained increasing interest. However, low stability and adverse systemic side effects severely decrease their efficiency. This study proposed a stable oil-in-water (O/W) emulsion loaded with bifonazole (BFZ) as a lipophilic drug stabilized by poly(2-isopropoxy-2-oxo-1,3,2-dioxaphospholane)-modified cellulose nanocrystals (CNC-g-PIPP) as vehicles for topical delivery of lipophilic drugs. We fully characterized stability, BFZ-loaded particle-stabilized emulsions (PEs) for morphology, droplet size, and its distribution. In addition, we evaluated the in vitro drug-releasing capacity and in vitro skin permeation of BFZ in a porcine skin animal model using a side-bi-side® diffusion cell. An O/W BFZ-loaded emulsion stabilized with CNC-g-PIPP particles (BFZ-loaded CP-PE) with a small mean droplet size of 2.54 ± 1.39 µm was developed and was stable for > = 15 days without a significant change in droplet size. The BFZ-loading efficiency in PEs was 83.1 %. BFZ was slowly released over an extended period, and the releasing ratio from BFZ-loaded CP-PE was only 17 % after 48 h. The BFZ-loaded CP-PE showed a â¼4.4-fold increase in BFZ permeation and penetration compared to a conventional surfactant-stabilized emulsion and BFZ control solution. Fluorescence-labeling studies showed that BFZ-loaded CP-PE could well penetrate skin layers from the stratum corneum (SC) to the dermis. In addition, histopathology studies of porcine skin treated with the PE formulation showed an intact SC with unaltered adjacent structures and no observed signs of inflammation. Therefore, the proposed CP-PE shows great potential as a transdermal drug carrier for enhancing lipophilic drug permeation.
Assuntos
Portadores de Fármacos , Absorção Cutânea , Administração Cutânea , Animais , Portadores de Fármacos/metabolismo , Emulsões/metabolismo , Tamanho da Partícula , Pele/metabolismo , Suínos , Água/metabolismoRESUMO
Our groups have previously developed a biochemical gas sensor to measure isopropanol (IPA) in exhaled air and have applied it for breath IPA investigation in healthy subjects and diabetes patients. In this study, the original bio-sniffer was modified with a series of components that improved the limit of detection (LOD). First, the modified IPA bio-sniffer used a C8855-type photomultiplier tube (PMT) that performed well in the photon sensitivity at the peak wavelength of nicotinamide adenine dinucleotide (NADH) fluorescence. Second, the multi-core bifurcated optical fiber, which incorporated 36 fibers to replace the previous dual-core type, enhanced the fluorescence collection. Third, the optical fiber probe was reinforced for greater width, and the flow-cell was redesigned to increase the area of the enzyme-immobilized membrane in contact with the air sample. These modifications lowered the detection limit to 0.5 ppb, a significant increase over the previous 1.0 ppb. Moreover, the modified bio-sniffer successfully analyzed the IPA concentration in exhaled air from a volunteer, which confirmed its capability for real-world sample detection. The modified bio-sniffer is more applicable to breath measurement and the detection of other extremely-low-concentration samples.