Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Viruses ; 15(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38140568

RESUMO

The 2022 global Mpox outbreak swiftly introduced unforeseen diversity in the monkeypox virus (MPXV) population, resulting in numerous Clade IIb sublineages. This propagation of new MPXV mutations warrants the thorough re-investigation of previously recommended or validated primers designed to target MPXV genomes. In this study, we explored 18 PCR primer sets and examined their binding specificity against 5210 MPXV genomes, representing all the established MPXV lineages. Our results indicated that only five primer sets resulted in almost all perfect matches against the targeted MPXV lineages, and the remaining primer sets all contained 1-2 mismatches against almost all the MPXV lineages. We further investigated the mismatched primer-genome pairs and discovered that some of the primers overlapped with poorly sequenced and assembled regions of the MPXV genomes, which are consistent across multiple lineages. However, we identified 173 99% genome-wide conserved regions across all 5210 MPXV genomes, representing 30 lineages/clades with at least 80% lineage-specific consensus for future primer development and primer binding evaluation. This exercise is crucial to ensure that the current detection schemes are robust and serve as a framework for primer evaluation in clinical testing development for other infectious diseases.


Assuntos
Bioensaio , Monkeypox virus , Humanos , Consenso , Surtos de Doenças , Monkeypox virus/genética , Reação em Cadeia da Polimerase
2.
J Neurosci ; 37(36): 8706-8717, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821665

RESUMO

The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1-translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors (emx2, lhx2, and hopx), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity.SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/metabolismo , Animais , Astrócitos/classificação , Astrócitos/citologia , Encéfalo/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Mol Cell Endocrinol ; 442: 12-23, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27888004

RESUMO

The unliganded form of the estrogen receptor is generally thought to be inactive. Our prior studies, however, suggested that unliganded estrogen receptor alpha (ERα) exacerbates adverse vascular injury responses in mice. Here, we show that the presence of unliganded ERα decreases vascular endothelial cell (EC) migration and proliferation, increases smooth muscle cell (SMC) proliferation, and increases inflammatory responses in cultured ECs and SMCs. Unliganded ERα also regulates many genes in vascular ECs and mouse aorta. Activation of ERα by E2 reverses the cell physiological effects of unliganded ERα, and promotes gene regulatory effects that are predicted to counter the effects of unliganded ERα. These results reveal that the unliganded form of ERα is not inert, but significantly impacts gene expression and physiology of vascular cells. Furthermore, they indicate that the cardiovascular protective effects of estrogen may be connected to its ability to counteract these effects of unliganded ERα.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Expressão Gênica/fisiologia , Músculo Liso Vascular/metabolismo , Animais , Aorta/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo
4.
PLoS One ; 11(6): e0156772, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276022

RESUMO

MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a "seed region" of moR-21 as well as a "seed match region" in the target gene 3'UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active.


Assuntos
Regiões 3' não Traduzidas , Proteínas Argonautas/biossíntese , Proliferação de Células , Regulação para Baixo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Proteínas Argonautas/genética , Camundongos , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia
5.
PLoS One ; 11(4): e0152807, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27035664

RESUMO

Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs), which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen) in vascular injury require the estrogen receptor alpha (ERα). ERα transduces the effects of estrogen via a classical DNA binding, "genomic" signaling pathway and via a more recently-described "rapid" signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα) that is specifically defective in rapid signaling, but is competent to regulate transcription through the "genomic" pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Endotélio Vascular/metabolismo , Estradiol/fisiologia , Receptor alfa de Estrogênio/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Endotélio Vascular/citologia , Humanos , Mutação , Fatores de Transcrição/metabolismo
7.
PLoS One ; 11(3): e0151579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26968002

RESUMO

BACKGROUND: The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. OBJECTIVE: In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. METHODS: Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. RESULTS: No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. CONCLUSIONS: In this animal model, modulation of paternal B vitamin intake prior to mating alters offspring weight gain, lipid metabolism and tumor growth in a sex-specific fashion. These results highlight the need to better define how paternal nutrition affects the health of offspring.


Assuntos
Pai , Crescimento e Desenvolvimento/efeitos dos fármacos , Neoplasias Intestinais/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Peso Corporal/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/metabolismo , Masculino , Camundongos , Mutação , Reprodução/efeitos dos fármacos , Caracteres Sexuais , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Complexo Vitamínico B/sangue
8.
Front Mol Neurosci ; 9: 146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066175

RESUMO

Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.

9.
PLoS One ; 10(8): e0135758, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284788

RESUMO

Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fezes/química , Fezes/microbiologia , Metaboloma , Microbiota , Obesidade/genética , Receptores para Leptina/genética , Animais , Feminino , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/microbiologia , Masculino , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Camundongos , Microbiota/efeitos dos fármacos , Microbiota/genética , Mutação , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/microbiologia , Receptores para Leptina/deficiência
10.
Atherosclerosis ; 241(2): 400-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26074314

RESUMO

OBJECTIVE: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). METHODS: Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). RESULTS: Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. CONCLUSIONS: Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Leucócitos Mononucleares/efeitos dos fármacos , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Administração Oral , Adulto , Biomarcadores/sangue , Boston , Ácidos Docosa-Hexaenoicos/sangue , Método Duplo-Cego , Ácido Eicosapentaenoico/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Azeite de Oliva/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Regulação para Cima
11.
Brain Res ; 1618: 111-21, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26047984

RESUMO

The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Redes Reguladoras de Genes , Mesencéfalo/patologia , MicroRNAs/metabolismo , Doença de Parkinson/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
12.
Epigenetics ; 9(10): 1339-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25437049

RESUMO

Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.


Assuntos
Metilação de DNA , Pé Diabético/genética , Epigênese Genética , Fibroblastos/metabolismo , Adulto , Idoso , Linhagem Celular , Biologia Computacional , Pé Diabético/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Mol Endocrinol ; 28(8): 1337-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992180

RESUMO

Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17ß-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues.


Assuntos
Aorta/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/fisiologia , Fígado/metabolismo , Animais , Sequência de Bases , Doenças Cardiovasculares/metabolismo , Cromatina/metabolismo , Sequência Consenso , Estradiol/fisiologia , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
14.
Curr Cardiovasc Risk Rep ; 8: 372, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24683432

RESUMO

Cardiovascular diseases (CVD) are complex, involving numerous biological entities from genes and small molecules to organ function. Placing these entities in networks where the functional relationships among the constituents are drawn can aid in our understanding of disease onset, progression and prevention. While networks, or interactomes, are often classified by a general term, say lipids or inflammation, it is a more encompassing class of network that is more informative in showing connections among the active entities and allowing better hypotheses of novel CVD players to be formulated. A range of networks will be presented whereby the potential to bring new objects into the CVD milieu will be exemplified.

15.
Arterioscler Thromb Vasc Biol ; 33(2): 257-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175673

RESUMO

OBJECTIVE: Estradiol (E2) regulates gene transcription by activating estrogen receptor-α and estrogen receptor-ß. Many of the genes regulated by E2 via estrogen receptors are repressed, yet the molecular mechanisms that mediate E2-induced gene repression are currently unknown. We hypothesized that E2, acting through estrogen receptors, regulates expression of microRNAs (miRs) leading to repression of expression of specific target genes. METHODS AND RESULTS: Here, we report that E2 significantly upregulates the expression of 26 miRs and downregulates the expression of 6 miRs in mouse aorta. E2-mediated upregulation of one of these miRs, miR-203, was chosen for further study. In cultured vascular smooth muscle cells (VSMC), E2-mediated upregulation of miR-203 is mediated by estrogen receptor-α (but not estrogen receptor-ß) via transcriptional upregulation of the primary miR. We demonstrate that the transcription factors Zeb-1 and AP-1 play critical roles in mediating E2-induced upregulation of miR-203 transcription. We show further that miR-203 mediates E2-induced repression of Abl1, and p63 protein abundance in VSMC. Finally, knocking-down miR-203 abolishes E2-mediated inhibition of VSMC proliferation, and overexpression of miR-203 inhibits cultured VSMC proliferation, but not vascular endothelial cell proliferation. CONCLUSIONS: Our findings demonstrate that E2 regulates expression of miRs in the vasculature and support the estrogen receptors-dependent induction of miRs as a mechanism for E2-mediated gene repression. Furthermore, our findings demonstrate that miR-203 contributes to E2-induced inhibition of VSMC proliferation and highlight the potential of miR-203 as a therapeutic agent in the treatment of proliferative cardiovascular diseases.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Sítios de Ligação , Células Cultivadas , Estradiol/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ovariectomia , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-abl/metabolismo , Interferência de RNA , Fatores de Tempo , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Transfecção , Homeobox 1 de Ligação a E-box em Dedo de Zinco
16.
Circulation ; 126(16): 1993-2004, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22997253

RESUMO

BACKGROUND: Clinical trial and epidemiological data support that the cardiovascular effects of estrogen are complex, including a mixture of both potentially beneficial and harmful effects. In animal models, estrogen protects females from vascular injury and inhibits atherosclerosis. These effects are mediated by estrogen receptors (ERs), which, when bound to estrogen, can bind to DNA to directly regulate transcription. ERs can also activate several cellular kinases by inducing a rapid nonnuclear signaling cascade. However, the biological significance of this rapid signaling pathway has been unclear. METHODS AND RESULTS: In the present study, we develop a novel transgenic mouse in which rapid signaling is blocked by overexpression of a peptide that prevents ERs from interacting with the scaffold protein striatin (the disrupting peptide mouse). Microarray analysis of ex vivo treated mouse aortas demonstrates that rapid ER signaling plays an important role in estrogen-mediated gene regulatory responses. Disruption of ER-striatin interactions also eliminates the ability of estrogen to stimulate cultured endothelial cell migration and to inhibit cultured vascular smooth muscle cell growth. The importance of these findings is underscored by in vivo experiments demonstrating loss of estrogen-mediated protection against vascular injury in the disrupting peptide mouse after carotid artery wire injury. CONCLUSIONS: Taken together, these results support the concept that rapid, nonnuclear ER signaling contributes to the transcriptional regulatory functions of ER and is essential for many of the vasoprotective effects of estrogen. These findings also identify the rapid ER signaling pathway as a potential target for the development of novel therapeutic agents.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta/citologia , Células COS , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Ovariectomia , Gravidez , Transcriptoma
17.
J Clin Invest ; 122(9): 3063-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863620

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Imunomodulação , MicroRNAs/genética , Monócitos/imunologia , Medula Espinal/imunologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos Monoclonais/administração & dosagem , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos Ly/genética , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Apoptose , Apirase/genética , Apirase/metabolismo , Proliferação de Células , Quimiotaxia , Feminino , Redes Reguladoras de Genes , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Microglia/imunologia , Microglia/patologia , Monócitos/metabolismo , Monócitos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Ratos , Ratos Endogâmicos Lew , Medula Espinal/patologia , Baço/imunologia , Baço/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
18.
Chem Biol Drug Des ; 79(6): 926-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22304734

RESUMO

Our concept of enzyme-mediated cancer imaging and therapy aims to use radiolabeled compounds to target hydrolases over-expressed on the extracellular surface of solid tumors. A data mining approach identified extracellular sulfatase 1 (SULF1) as an enzyme expressed on the surface of pancreatic cancer cells. We designed, synthesized, and characterized 2-(2'-sulfooxyphenyl)-6-iodo-4-(3H)-quinazolinone (IQ(2-S)) as well as its radioiodinated form ((125) IQ(2-S)) as a prodrug with potential for hydrolysis by SULF1. IQ(2-S) was successfully docked in silico into three enzymes - homolog of SULF1, alkaline phosphatase, and prostatic acid phosphatase. The incubation of (125) IQ(2-S) and (125) IQ(2-P) with the three enzymes in solution confirms the docking results and enzyme selectivity for the analogs. The hydrolysis of both radioactive compounds produces the water-insoluble, fluorescent product 2-(2'-hydroxyphenyl)-6-[(125) I]iodo-4-(3H)-quinazolinone ((125) IQ(2-OH)). The in vitro incubation of (127) IQ(2-S) and (127) IQ(2-P) with pancreatic, ovarian, and prostate cancer cells expressing studied hydrolases also results in their hydrolysis and the precipitation of (127) IQ(2-OH) fluorescent crystals on the cell surface. To our knowledge, these findings are the first to report the targeting of a radioactive substrate to SULF1 and that this prodrug may be potentially useful in the imaging ((123) I/(124) I/(131) I) and radiotherapy ((131) I) of pancreatic cancer.


Assuntos
Pró-Fármacos/química , Quinazolinonas/química , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Simulação por Computador , Humanos , Hidrólise , Radioisótopos do Iodo/química , Marcação por Isótopo , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Pró-Fármacos/farmacologia , Estrutura Terciária de Proteína , Quinazolinonas/farmacologia , Sulfotransferases/química , Sulfotransferases/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 31(8): 1871-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21617142

RESUMO

OBJECTIVE: Aldosterone (Aldo) antagonism prevents cardiovascular mortality by unclear mechanisms. Aldo binds to the mineralocorticoid receptor (MR), a ligand-activated transcription factor, which is expressed in human vascular cells. Here we define the early Aldo-regulated vascular transcriptome and investigate the mechanisms of gene regulation by Aldo in the vasculature that may contribute to vascular disease. METHODS AND RESULTS: Gene expression profiling of Aldo-treated mouse aortas identified 72 genes regulated by Aldo. These genes are overrepresented in Gene Ontology categories involved in vascular function and disease. Quantitative reverse transcription-polymerase chain reaction was used to confirm and further explore mechanisms of vascular gene regulation by Aldo. Aldo-regulated vascular gene expression was inhibited by actinomycin D and MR antagonists supporting a transcriptional MR-dependent mechanism. Aldo regulation of a subset of genes was enhanced in the setting of vascular endothelial denudation and blocked by the free radical scavenger Tempol, supporting synergy between Aldo and vascular injury that is oxidative stress dependent. In the aortic arch, a region predisposed to atherosclerosis, the injury-enhanced genes also demonstrated enhanced expression compared with the descending aorta, both at baseline and after Aldo exposure. Furthermore, the clinically beneficial MR antagonist spironolactone inhibited expression of the identified genes in aortic tissue from humans with atherosclerosis. CONCLUSIONS: This study defines the Aldo-regulated vascular transcriptome and characterizes a subset of proatherogenic genes with enhanced Aldo-stimulated, oxidative stress-dependent expression in the setting of vascular injury and in areas predisposed to atherosclerosis. Inhibition of MR regulation of these genes may play a role in the protective effects of Aldo antagonists in patients with vascular disease, and these pathways may provide novel drug targets to prevent atherosclerosis in humans.


Assuntos
Aldosterona/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Células Cultivadas , Dactinomicina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espironolactona/farmacologia
20.
PLoS One ; 5(1): e8830, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20098615

RESUMO

Bicuspid Aortic Valve (BAV) is a highly heritable congenital heart defect. The low frequency of BAV (1% of general population) limits our ability to perform genome-wide association studies. We present the application of four a priori SNP selection techniques, reducing the multiple-testing penalty by restricting analysis to SNPs relevant to BAV in a genome-wide SNP dataset from a cohort of 68 BAV probands and 830 control subjects. Two knowledge-based approaches, CANDID and STRING, were used to systematically identify BAV genes, and their SNPs, from the published literature, microarray expression studies and a genome scan. We additionally tested Functionally Interpolating SNPs (fitSNPs) present on the array; the fourth consisted of SNPs selected by Random Forests, a machine learning approach. These approaches reduced the multiple testing penalty by lowering the fraction of the genome probed to 0.19% of the total, while increasing the likelihood of studying SNPs within relevant BAV genes and pathways. Three loci were identified by CANDID, STRING, and fitSNPS. A haplotype within the AXIN1-PDIA2 locus (p-value of 2.926x10(-06)) and a haplotype within the Endoglin gene (p-value of 5.881x10(-04)) were found to be strongly associated with BAV. The Random Forests approach identified a SNP on chromosome 3 in association with BAV (p-value 5.061x10(-06)). The results presented here support an important role for genetic variants in BAV and provide support for additional studies in well-powered cohorts. Further, these studies demonstrate that leveraging existing expression and genomic data in the context of GWAS studies can identify biologically relevant genes and pathways associated with a congenital heart defect.


Assuntos
Antígenos CD/genética , Valva Aórtica/anormalidades , Redes Reguladoras de Genes , Haplótipos , Cardiopatias Congênitas/genética , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Superfície Celular/genética , Proteínas Repressoras/genética , Proteína Axina , Estudos de Casos e Controles , Endoglina , Estudo de Associação Genômica Ampla , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA