Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(7): 946-958, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312275

RESUMO

Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.


Assuntos
Serotonina , Substância Negra , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo , Camundongos , Optogenética , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Substância Negra/metabolismo
2.
Anal Bioanal Chem ; 413(27): 6747-6767, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34686897

RESUMO

Many voltammetry methods have been developed to monitor brain extracellular dopamine levels. Fewer approaches have been successful in detecting serotonin in vivo. No voltammetric techniques are currently available to monitor both neurotransmitters simultaneously across timescales, even though they play integrated roles in modulating behavior. We provide proof-of-concept for rapid pulse voltammetry coupled with partial least squares regression (RPV-PLSR), an approach adapted from multi-electrode systems (i.e., electronic tongues) used to identify multiple components in complex environments. We exploited small differences in analyte redox profiles to select pulse steps for RPV waveforms. Using an intentionally designed pulse strategy combined with custom instrumentation and analysis software, we monitored basal and stimulated levels of dopamine and serotonin. In addition to faradaic currents, capacitive currents were important factors in analyte identification arguing against background subtraction. Compared to fast-scan cyclic voltammetry-principal components regression (FSCV-PCR), RPV-PLSR better differentiated and quantified basal and stimulated dopamine and serotonin associated with striatal recording electrode position, optical stimulation frequency, and serotonin reuptake inhibition. The RPV-PLSR approach can be generalized to other electrochemically active neurotransmitters and provides a feedback pipeline for future optimization of multi-analyte, fit-for-purpose waveforms and machine learning approaches to data analysis.


Assuntos
Encéfalo/metabolismo , Dopamina/análise , Técnicas Eletroquímicas/métodos , Serotonina/análise , Animais , Encéfalo/efeitos dos fármacos , Calibragem , Fibra de Carbono , Dopamina/farmacocinética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/estatística & dados numéricos , Escitalopram/farmacologia , Feminino , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Microeletrodos , Neurotransmissores/análise , Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Processamento de Sinais Assistido por Computador , Software
3.
J Mech Behav Biomed Mater ; 110: 104001, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957260

RESUMO

In the present work, mechano-geometrical characterisations of skeletal muscle fibres in two different deformation states, namely, axial tension and axial compression, were realised. In both cases, cyclic and relaxation tests were performed. Additionally, the changes in the volume of the fibres during deformation were recorded to obtain more detailed information about the muscle fibre load transfer mechanisms. To the best of the authors' knowledge, the present experimental investigation of the mechanical and geometrical characteristics of muscle fibres provides a novel comprehensive data set that can be used to obtain a better understanding of muscle fibre load transfer mechanisms and to construct meaningful models. In the present study, it is shown that muscle fibres exhibit incompressibility (5% volume decrease at maximum deformation) under tension and that this feature is more pronounced under compression loading (37% volume decrease at maximum deformation). These findings are particularly interesting and lead to a further understanding of load transfer mechanisms and to the development of new modelling strategies.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Fenômenos Biomecânicos , Músculo Esquelético , Pressão
4.
Acta Biomater ; 92: 277-289, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077887

RESUMO

Characterisation of the skeletal muscle's passive properties is a challenging task since its structure is dominated by a highly complex and hierarchical arrangement of fibrous components at different scales. The present work focuses on the micromechanical characterisation of skeletal muscle fibres, which consist of myofibrils, by realising three different deformation states, namely, axial tension, axial compression, and transversal compression. To the best of the authors' knowledge, the present study provides a novel comprehensive data set representing of different deformation states. These data allow for a better understanding of muscle fibre load transfer mechanisms and can be used for meaningful modelling approaches. As the present study shows, axial tension and compression experiments reveal a strong tension-compression asymmetry at fibre level. In comparison to the tissue level, this asymmetric behaviour is more pronounced at the fibre scale, elucidating the load transfer mechanism in muscle tissue and aiding in the development of future modelling strategies. Further, a Bayesian hierarchical modelling approach was used to consider the experimental fluctuations in a parameter identification scheme, leading to more comprehensive parameter distributions that reflect the entire observed experimental uncertainty. STATEMENT OF SIGNIFICANCE: This article examines for the first time the mechanical properties of skeletal muscle fibres under axial tension, axial compression, and transversal compression, leading to a highly comprehensive data set. Moreover, a Bayesian hierarchical modelling concept is presented to identify model parameters in a broad way. The results of the deformation states allow a new and comprehensive understanding of muscle fibres' load transfer mechanisms; one example is the effect of tension-compression asymmetry. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to the muscle's functional understanding during daily activity. On the other hand, they are relevant in the fields of skeletal muscle multiscale, constitutive modelling.


Assuntos
Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Animais , Teorema de Bayes , Fenômenos Biomecânicos , Análise de Elementos Finitos , Reprodutibilidade dos Testes , Estresse Mecânico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA