Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bone ; 171: 116743, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958542

RESUMO

BACKGROUND: Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE: To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS: In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS: The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION: This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.


Assuntos
Aprendizado Profundo , Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Osteoporose Pós-Menopausa/diagnóstico por imagem , Estudos Retrospectivos , Porosidade , Osso Cortical/diagnóstico por imagem , Densidade Óssea , Imageamento por Ressonância Magnética/métodos
2.
J Neurooncol ; 156(3): 645-653, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35043276

RESUMO

PURPOSE: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS: Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS: This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Macrófagos Associados a Tumor , Adulto , Apoferritinas/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 87(1): 323-336, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355815

RESUMO

PURPOSE: Magnetic susceptibility (Δχ) alterations have shown association with myocardial infarction (MI) iron deposition, yet there remains limited understanding of the relationship between relaxation rates and susceptibility or the effect of magnetic field strength. Hence, Δχ and R2∗ in MI were compared at 3T and 7T. METHODS: Subacute MI was induced by coronary artery ligation in male Yorkshire swine. 3D multiecho gradient echo imaging was performed at 1-week postinfarction at 3T and 7T. Quantitative susceptibility mapping images were reconstructed using a morphology-enabled dipole inversion. R2∗ maps and quantitative susceptibility mapping were generated to assess the relationship between R2∗ , Δχ, and field strength. Infarct histopathology was investigated. RESULTS: Magnetic susceptibility was not significantly different across field strengths (7T: 126.8 ± 41.7 ppb; 3T: 110.2 ± 21.0 ppb, P = NS), unlike R2∗ (7T: 247.0 ± 14.8 Hz; 3T: 106.1 ± 6.5 Hz, P < .001). Additionally, infarct Δχ and R2∗ were significantly higher than remote myocardium. Magnetic susceptibility at 7T versus 3T had a significant association (ß = 1.02, R2 = 0.82, P < .001), as did R2∗ (ß = 2.35, R2 = 0.98, P < .001). Infarct pathophysiology and iron deposition were detected through histology and compared with imaging findings. CONCLUSION: R2∗ showed dependence and Δχ showed independence of field strength. Histology validated the presence of iron and supported imaging findings.


Assuntos
Imageamento por Ressonância Magnética , Traumatismo por Reperfusão Miocárdica , Animais , Ferro , Fenômenos Magnéticos , Magnetismo , Masculino , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Suínos
4.
Radiol Artif Intell ; 3(4): e200148, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350405

RESUMO

PURPOSE: To perform automated myocardial segmentation and uptake classification from whole-body fluorine 18 fluorodeoxyglucose (FDG) PET. MATERIALS AND METHODS: In this retrospective study, consecutive patients who underwent FDG PET imaging for oncologic indications were included (July-August 2018). The left ventricle (LV) on whole-body FDG PET images was manually segmented and classified as showing no myocardial uptake, diffuse uptake, or partial uptake. A total of 609 patients (mean age, 64 years ± 14 [standard deviation]; 309 women) were included and split between training (60%, 365 patients), validation (20%, 122 patients), and testing (20%, 122 patients) datasets. Two sequential neural networks were developed to automatically segment the LV and classify the myocardial uptake pattern using segmentation and classification training data provided by human experts. Linear regression was performed to correlate findings from human experts and deep learning. Classification performance was evaluated using receiver operating characteristic (ROC) analysis. RESULTS: There was moderate agreement of uptake pattern between experts and deep learning (as a fraction of correctly categorized images) with 78% (36 of 46) for no uptake, 71% (34 of 48) for diffuse uptake, and 71% (20 of 28) for partial uptake. There was no bias in LV volume for partial or diffuse uptake categories (P = .56); however, deep learning underestimated LV volumes in the no uptake category. There was good correlation for LV volume (R 2 = 0.35, b = .71). ROC analysis showed the area under the curve for classifying no uptake and diffuse uptake was high (> 0.90) but lower for partial uptake (0.77). The feasibility of a myocardial uptake index (MUI) for quantifying the degree of myocardial activity patterns was shown, and there was excellent visual agreement between MUI and uptake patterns. CONCLUSION: Deep learning was able to segment and classify myocardial uptake patterns on FDG PET images.Keywords: PET, Heart, Computer Aided Diagnosis, Computer Application-Detection/DiagnosisSupplemental material is available for this article.©RSNA, 2021.

5.
Nat Commun ; 11(1): 3273, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601301

RESUMO

Restoration of coronary blood flow after a heart attack can cause reperfusion injury potentially leading to impaired cardiac function, adverse tissue remodeling and heart failure. Iron is an essential biometal that may have a pathologic role in this process. There is a clinical need for a precise noninvasive method to detect iron for risk stratification of patients and therapy evaluation. Here, we report that magnetic susceptibility imaging in a large animal model shows an infarct paramagnetic shift associated with duration of coronary artery occlusion and the presence of iron. Iron validation techniques used include histology, immunohistochemistry, spectrometry and spectroscopy. Further mRNA analysis shows upregulation of ferritin and heme oxygenase. While conventional imaging corroborates the findings of iron deposition, magnetic susceptibility imaging has improved sensitivity to iron and mitigates confounding factors such as edema and fibrosis. Myocardial infarction patients receiving reperfusion therapy show magnetic susceptibility changes associated with hypokinetic myocardial wall motion and microvascular obstruction, demonstrating potential for clinical translation.


Assuntos
Ferro/análise , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Idoso , Animais , Estudos Transversais , Feminino , Ferritinas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Cicatrização
6.
Magn Reson Med ; 78(2): 678-688, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27579717

RESUMO

PURPOSE: Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias. METHODS: Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies. Image sharpness, contrast, and volume variation were quantified and compared with self-gated MRI. Images were scored for image quality and artifacts. Hemodynamic parameters were computed for each distinct beat morphology in bigeminy and trigeminy subjects and for sinus beats in patients with infrequent premature ventricular contractions. RESULTS: Images of distinct beat types were reconstructed except for two patients with infrequent premature ventricular contractions. Image contrast and sharpness were similar to sinus self-gated images (contrast = 0.45 ± 0.13 and 0.43 ± 0.15; sharpness = 0.21 ± 0.11 and 0.20 ± 0.05). Visual scoring was highest in self-gated images (4.1 ± 0.3) compared with real-time (3.9 ± 0.4) and ECG-gated cine (3.4 ± 1.5). ECG-gated cine had less artifacts than self-gating (2.3 ± 0.7 and 2.1 ± 0.2), but was affected by misgating in two subjects. Among arrhythmia subjects, post-extrasystole/sinus (58.1 ± 8.6 mL) and interrupted sinus (61.4 ± 5.9 mL) stroke volume was higher than extrasystole (32.0 ± 16.5 mL; P < 0.02). CONCLUSION: Self-gated imaging can reconstruct images during ectopy and allowed for quantification of hemodynamic function of different beat morphologies. Magn Reson Med 78:678-688, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Idoso , Algoritmos , Hemodinâmica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA