Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 286(Pt 3): 131859, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34416583

RESUMO

Three different innovative mathematical models were established to assess the volumetric nitrogen conversion rates of a lab-scale ANAMMOX upflow anaerobic sludge blanket reactor. Despite the vast technological and economical advantages of ANAMMOX, major challenges in process implementation call for mathematic simulations of the process, optimization of operating conditions, and kinetic/statistical analysis of the entire process. In this study, all developed mathematical models implemented via BioWin®, were calibrated and validated, with adequate representations of a bench-scale micro-granular ANAMMOX process, to understand the potential setbacks of ANAMMOX process start-up and stabilization. Fundamental calculations of the kinetic and stoichiometric constants were integrated in the BioWin® software, and the adjusted parameters based on experimental analysis were applied for the assessments. Based on the results from the statistical approach, one of the models (Model III) exhibited a precise prognosis of the effluent data for the entire operational phases with a mean relative error (MRE) of approximately 1.96, 4.36 and 2.54% for nitrogen removal efficiency, removal rate and loading rate, respectively. Evaluating alkalinity and pH during the operation, led to identifying an acceptable fit between the experiment and Model III results, with a MRE of -7.19 and -0.35%, correspondingly. This study confirms the reliability of ANAMMOX-based process modeling and high predictive ability with BioWin®. The presented simulation constants and modeling outline, can be further employed in full-scale applications design and development.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Nitrogênio , Reprodutibilidade dos Testes
2.
Chemosphere ; 286(Pt 2): 131778, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426132

RESUMO

Recent research has shown the adaptability of Biological Nutrient Removal (BNR) systems to very low level dissolved oxygen (DO) concentration, mainly focusing in the nitrification ability that maintains the nitrogen oxidation process even at very low DO levels. Although step-wise aeration decrease on Enhanced Biological Phosphorus Removal (EBPR) is not fully comprehended. This study investigated the effect of reaching micro-aeration with adaptation strategies on EBPR performance. A step-wise oxygen concentration decrease, arriving at an average aeration level of 0.4 mgO2/L was evaluated, with an outcome of approximately 90 % phosphorus removal efficiency. Compared with different aeration modes, the highest phosphorus (P)-removal efficiency, P-release and lowest effluent phosphorus was achieved in gradual DO decrease strategy. On the other hand, an instant decrease in aeration from stable EBPR process from 2 mgO2/L to 0.4 mgO2/L adversely impacted P-removal by decreasing the efficiency to average 60 % and deteriorating the phosphorus removing microbial consortium. Comparison of results between instant and gradual DO-decrease, indicated the sensitivity of microorganisms to aeration. Microbial adaptation to decreased oxygen availability is crucial to reach high process performance. This study proposes, a potential aeration mode, which contributes in reduction of energy consumption in BNR systems through wastewater treatment.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrogênio , Oxigênio , Esgotos
3.
J Environ Sci (China) ; 109: 1-14, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607658

RESUMO

Biological nutrient removal grows into complicated scenario due to the microbial consortium shift and kinetic competition between phosphorus (P)-accumulating and nitrogen (N)-removing microorganisms. In this study, three sequential batch reactors with constant operational conditions except aeration patterns at 6 h cycle periods were tested. Intermittent aeration was applied to develop a robust nutrient removal system aimed to achieve high energy saving and removal efficiency. The results showed higher correspondence of P-uptake, polymeric substance synthesis and glycogen degradation in intermittent-aeration with longer interval periods compared to continuous-aeration. Increasing the intermittent-aeration duration from 25 to 50 min, resulted in higher process performance where the system exhibited approximately 30% higher nutrient removal. This study indicated that nutrient removal strongly depends on reaction phase configuration representing the importance of aeration pattern. The microbial community examined the variation in abundance of bacterial groups in suspended sludge, where the 50 min intermittent aeration, favored the growth of P-accumulating organisms and nitrogen removal microbial groups, indicating the complications related to nutrient removal systems. Successful intermittently aerated process with high capability of simple implementation to conventional systems by elemental retrofitting, is applicable for upgrading wastewater treatment plants. With aeration as a major operational cost, this process is a promising approach to potentially remove nutrients in high competence, in distinction to optimizing cost-efficacy of the system.


Assuntos
Nitrogênio , Fósforo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
4.
J Environ Manage ; 288: 112362, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831633

RESUMO

Enhanced biological phosphorus removal (EBPR) is one of the most promising technologies as an economical and environmentally sustainable technique for removal of phosphorus from wastewater (WW). However, with high capacity of EBPR, insufficient P-removal is a major yet common issue of many full-scale wastewater treatment plants (WWTP), due to misinterpreted environmental and microbial disturbance. By developing a rather extensive understanding on biochemical pathways and metabolic models governing the anaerobic and aerobic/anoxic processes; the optimal operational conditions, environmental changes and microbial population interaction are efficiently predicted. Therefore, this paper critically reviews the current knowledge on biochemical pathways and metabolic models of phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) as the most abundant microbial populations in EBPR process with an insight on the effect of available carbon source types in WW on phosphorus removal performance. Moreover, this paper critically assesses the gaps and potential future research in metabolic modeling area. With all the developments on EBPR process in the past few decades, there is still lack of knowledge in this critical sector. This paper hopes to touch on this problem by gathering the existing knowledge and to provide farther insights on the future work onto chemical transformations and metabolic strategies in different conditions to benefit the quantitative model as well as WWTP designs.


Assuntos
Carbono , Fósforo , Reatores Biológicos , Polifosfatos , Águas Residuárias
5.
Chemosphere ; 274: 129703, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33578118

RESUMO

Anaerobic ammonia oxidation (anammox) process has been proven to be a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loading rates. Anammox process is mainly operated through biofilm or granular sludge structures, as for such slow-growing microorganisms, elevated settling velocity of granules allows for adequate biomass retention and lowered potential risk of washouts. Stability of granular sludge biomass is extremely critical, yet the formation mechanism is poorly understood. There are number of important functions linked to Extracellular Polymeric Substance (EPS) in anammox bacterial matrix, such as; structural stability, aggregation promotion, maintenance of physical structure in the granules, water preserving and protective cell barrier. There is an increasing demand to introduce accurate methods for proper EPS extraction and characterization, to expand the perception of anammox granule stability and potential resource recovery. Analyzing EPS with a focus on various (mechanical and physical) properties can lead to biopolymer production from granular sludge. Biopolymers such as EPS are attractive alternatives substituting the conventional chemical polymers furthermore their recovery from the waste sludge and the potential applications in industrial sectors, leads to a radical enhancement of both environmental and economical sustainability, accelerating the circular economy advancements. Here, this study aims to overview the newest understanding on the structure of anammox sludge EPS, obtained recently and to assess the potential challenges and prospects to identify the knowledge gaps towards constructing an inclusive anammox EPS recovery and characterization procedure.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Bactérias , Biopolímeros , Reatores Biológicos , Nitrogênio , Águas Residuárias
6.
J Environ Manage ; 279: 111615, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33172703

RESUMO

Deammonification (partial nitritation-anammox) process is a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loadings. The bacterial groups responsible for this process are anaerobic ammonium oxidation (anammox) bacteria in symbiosis with ammonium oxidizing bacteria (AOB) which have an active role in development of nitrogen removal biotechnology in wastewater. Development and operation of sidestream deammonification processes has augmented since the initial full-scale systems, yet there are several aspects which mandate additional investigation and deliberation by the practitioners, to reach the operating perspective, set for the facility. Process technologies for treatment of streams with high ammonia concentrations continue to emerge, correspondingly, further investigation towards feasibility of applying the deammonification concept, in the mainstream treatment process is required. Mainstream deammonification can potentially improve the process of achieving more sustainable and energy-neutral municipal wastewater treatment, however feasible applications are not accessible yet. This critical review focuses on a comprehensive assessment of the worldwide lab-scale, pilot-scale and full-scale sidestream applications as well as identifying the major issues obstructing the implementation of mainstream processes, in addition to the designs, operational factors and technology advancements at both novel and/or conventional levels. This review aims to provide a novel and broad overview of the status and challenges of both sidestream and mainstream deammonification technologies and installations worldwide to assess the global perspectives on deammonification research in the recent years. The different configurations, crucial factors and overall trends in the development of deammonification research are discussed and conclusively, the future needs for feasible applications are critically reviewed.


Assuntos
Compostos de Amônio , Reatores Biológicos , Amônia , Nitrogênio , Oxirredução , Tecnologia , Águas Residuárias/análise
7.
Environ Pollut ; 267: 115370, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254637

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most well-known pharmaceuticals with a broad scope of properties that are widely used in human and veterinary medicine. Because of their extensive utilization, NSAIDs are commonly identified in the environment as trace emerging contaminants. Regardless of vast experience with these drugs, NSAIDs are full of contradictions that trigger major concerns for environmental researchers. A limited understanding on NSAID's occurrence, distribution and eco-toxicological effects have led to an escalated dilemma in the last decade. Thus, a broad-spectrum study covering all aspects of occurrence, detection and removal is required to meet the fundamental levels of knowledge on the effects of NSAIDs in all exposed environmental aspects. Therefore, this paper focuses on classifying the sources and entry points of residual NSAIDs. Further, detecting and regulating their concentrations in both input streams and receiving environments, along with the removal processes of this specific class of emerging compounds, in the direction of developing a management policy is comprehensively reviewed.


Assuntos
Anti-Inflamatórios não Esteroides , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA