Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 2: 150008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977814

RESUMO

Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

2.
PLoS One ; 9(2): e88920, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586441

RESUMO

Both surface water temperatures and the intensity of thermal stratification have increased recently in large lakes throughout the world. Such physical changes can be accompanied by shifts in plankton community structure, including changes in relative abundances and depth distributions. Here we analyzed 45 years of data from Lake Baikal, the world's oldest, deepest, and most voluminous lake, to assess long-term trends in the depth distribution of pelagic phytoplankton and zooplankton. Surface water temperatures in Lake Baikal increased steadily between 1955 and 2000, resulting in a stronger thermal gradient within the top 50 m of the water column. In conjunction with these physical changes our analyses reveal significant shifts in the daytime depth distribution of important phytoplankton and zooplankton groups. The relatively heavy diatoms, which often rely on mixing to remain suspended in the photic zone, shifted downward in the water column by 1.90 m y(-1), while the depths of other phytoplankton groups did not change significantly. Over the same time span the density-weighted average depth of most major zooplankton groups, including cladocerans, rotifers, and immature copepods, exhibited rapid shifts toward shallower positions (0.57-0.75 m y(-1)). As a result of these depth changes the vertical overlap between herbivorous copepods (Epischura baikalensis) and their algal food appears to have increased through time while that for cladocerans decreased. We hypothesize that warming surface waters and reduced mixing caused these ecological changes. Future studies should examine how changes in the vertical distribution of plankton might impact energy flow in this lake and others.


Assuntos
Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Ecossistema , Água Doce , Lagos , Estações do Ano , Sibéria , Temperatura
3.
PLoS One ; 6(2): e14688, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21359207

RESUMO

Large-scale climate change is superimposed on interacting patterns of climate variability that fluctuate on numerous temporal and spatial scales--elements of which, such as seasonal timing, may have important impacts on local and regional ecosystem forcing. Lake Baikal in Siberia is not only the world's largest and most biologically diverse lake, but it has exceptionally strong seasonal structure in ecosystem dynamics that may be dramatically affected by fluctuations in seasonal timing. We applied time-frequency analysis to a near-continuous, 58-year record of water temperature from Lake Baikal to examine how seasonality in the lake has fluctuated over the past half century and to infer underlying mechanisms. On decadal scales, the timing of seasonal onset strongly corresponds with deviation in the zonal wind intensity as described by length of day (LOD); on shorter scales, these temperature patterns shift in concert with the El Nino-Southern Oscillation (ENSO). Importantly, the connection between ENSO and Lake Baikal is gated by the cool and warm periods of the Pacific Decadal Oscillation (PDO). Large-scale climatic phenomena affecting Siberia are apparent in Lake Baikal surface water temperature data, dynamics resulting from jet stream and storm track variability in central Asia and across the Northern Hemisphere.


Assuntos
Clima , Água Doce , Estações do Ano , Temperatura , Água/fisiologia , Ecossistema , Geografia , Modelos Biológicos , Fotoperíodo , Sibéria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA