Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 111(3): 25, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647683

RESUMO

Tocoyena formosa has a persistent floral nectary that continues producing nectar throughout flower and fruit development. This plant also presents an intriguing non-anthetic nectary derived from early-developing floral buds with premature abscised corolla. In this study, we characterize the structure, morphological changes, and functioning of T. formosa floral nectary at different developmental stages. We subdivided the nectary into four categories based on the floral and fruit development stage at which nectar production started: (i) non-anthetic nectary; (ii) anthetic nectary, which follows the regular floral development; (iii) pericarpial nectary, derived from pollinated flowers following fruit development; and (iv) post-anthetic nectary that results from non-pollinated flowers after anthesis. The nectary has a uniseriate epidermis with stomata, nectariferous parenchyma, and vascular bundles, with a predominating phloem at the periphery. The non-anthetic nectary presents immature tissues that release the exudate. The nectary progressively becomes more rigid as the flower and fruit develop. The main nectary changes during flower and fruit development comprised the thickening of the cuticle and epidermal cell walls, formation of cuticular epithelium, and an increase in the abundance of calcium oxalate crystals and phenolic cells near the vascular bundles. Projections of the outer periclinal walls toward the cuticle in the post-anthetic nectary suggest nectar reabsorption. The anatomical changes of the nectary allow it to function for an extended period throughout floral and fruit development. Hence, T. formosa nectary is a bivalent secretory structure that plays a crucial role in the reproductive and defensive interactions of this plant species.


Assuntos
Flores , Néctar de Plantas , Rubiaceae , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Rubiaceae/anatomia & histologia , Rubiaceae/crescimento & desenvolvimento , Rubiaceae/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/anatomia & histologia
2.
Ann Bot ; 132(6): 1119-1130, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616580

RESUMO

BACKGROUND AND AIMS: Differences among populations in pollinator assemblages can lead to local adaptation mosaics in which plants evolve different floral morphologies and attractive traits. Mountain habitats may promote local adaptation because of differences in environmental conditions with altitude, causing changes in pollinators, and because mountaintops can act as isolated habitats. We studied if the differences in floral shape, size and nectar traits in Salvia stachydifolia can be attributed to variations in the relative contribution of hummingbirds and insects. METHODS: We studied eight populations of S. stachydifolia in natural and under common garden conditions, to assess whether population differences have a genetic component. We recorded pollinators, their behaviour and visitation rates, and characterized pollinator assemblages. In addition, we measured nectar volume and concentration, and collected flowers to describe floral shape and size variation using geometric morphometric methods. We then applied an unsupervised learning algorithm to identify ecotypes based on morphometric traits. Finally, we explored whether populations with different pollinator assemblages had different climatic and/or elevation preferences. KEY RESULTS: We found that variation in the identity of the main pollinators was associated with differences among populations in all traits, as expected under a local adaptation scenario. These differences persisted in the common garden, suggesting that they were not due to phenotypic plasticity. We found S. stachydifolia populations were pollinated either by bees, by hummingbirds or had mixed pollination. We identified two ecotypes that correspond to the identity of the main pollinator guilds, irrespective of climate or altitude. CONCLUSIONS: Variation in S. stachydifolia floral traits did not follow any evident association with bioclimatic factors, suggesting that populations may have diverged as the product of historical isolation on mountaintops. We suggest that differences among populations point to incipient speciation and an ongoing pollinator shift.


Assuntos
Néctar de Plantas , Salvia , Abelhas , Animais , Polinização , Flores , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA