Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38558385

RESUMO

AIM: Postmortem brain research is necessary for elucidating the pathology of schizophrenia; an increasing number of studies require a combination of suitable tissue samples preserved at multiple brain banks. In this study, we examined whether a comparative study of protein expression levels can be conducted using postmortem brain samples preserved in different facilities. METHODS: We compared the demographic factors of postmortem brain samples preserved in two institutions and measured and compared the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glial fibrillary acidic protein (GFAP) in the prefrontal cortex and superior temporal gyrus. GAPDH is generally used as a loading control for western blotting, and GFAP is considered as an astrocyte marker in the brain. RESULTS: We found significant differences between the two institutions in postmortem interval, age at death, and preservation time. To reduce the effects of these differences on our measurements, the parameters were set as covariates in our analyses of covariance. Subsequently, no differences in GAPDH and GFAP expression were found between institutions. CONCLUSIONS: When studies are conducted using brain samples preserved in different brain banks, differences in demographic factors should be carefully considered and taken into account by statistical methods to minimize their impact as much as possible. Since there was no significant difference in the protein expression levels of GAPDH and GFAP in either region between the two institutions that preserved the postmortem brains, we concluded that it is possible to perform protein quantitative analysis assuming that there is no effect of difference between two institutions.

2.
Front Psychiatry ; 14: 1183696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674553

RESUMO

Background: Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods: We selected the following stress-responsive molecules: interleukin (IL) -1ß, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results: We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion: Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.

3.
J Psychiatr Res ; 166: 10-16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659266

RESUMO

Schizophrenia is associated with aberration of inhibitory neurons. Although the mu-opioid receptor (MOR) is an essential modulator of inhibitory neurons, the effect of rs1799971 polymorphism in the MOR gene on risk of schizophrenia is controversial. Moreover, the disturbance of opioids systems in patients with schizophrenia has not been fully examined. We firstly conducted preliminary meta-analyses integrating Asian and European populations separately over 12,000 subjects to assess the effect of rs1799971 on risk of schizophrenia. Based on the above result, we also investigated the effect on the expression levels of MOR mRNA in the prefrontal cortex (PFC) and caudate nucleus of 41 postmortem brains. In addition, we determined whether these levels were related to antemortem schizophrenia symptoms and pharmacotherapeutic effects. The rs1799971 G-allele reduced the risk of schizophrenia in Asian populations (OR: 0.56, 95%CI: 0.32-0.98, p = 0.042) but increased it in European populations (OR: 1.66, 95%CI: 1.08-2.56, p = 0.022). It decreased MOR mRNA levels in PFC in the Japanese population (p = 0.031). Increased MOR mRNA level in PFC correlated with higher total score of antemortem schizophrenia symptoms (p = 0.017). Furthermore, the pharmacotherapeutic effect of first-generation antipsychotics was higher for genotype AA than AG/GG of rs1799971 (p = 0.036). The rs1799971 affects risk of schizophrenia and MOR mRNA expression and the effect varies according to ethnicity. Overexpression of MOR might induce severe schizophrenia symptoms. Therefore, MOR modulation may be the key clue for treating antipsychotics-resistant schizophrenia, and genotyping rs1799971 may provide a better pharmacotherapeutic strategy.

4.
Transl Psychiatry ; 13(1): 144, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142572

RESUMO

Schizophrenia is a multifactorial disorder, the genetic architecture of which remains unclear. Although many studies have examined the etiology of schizophrenia, the gene sets that contribute to its symptoms have not been fully investigated. In this study, we aimed to identify each gene set associated with corresponding symptoms of schizophrenia using the postmortem brains of 26 patients with schizophrenia and 51 controls. We classified genes expressed in the prefrontal cortex (analyzed by RNA-seq) into several modules by weighted gene co-expression network analysis (WGCNA) and examined the correlation between module expression and clinical characteristics. In addition, we calculated the polygenic risk score (PRS) for schizophrenia from Japanese genome-wide association studies, and investigated the association between the identified gene modules and PRS to evaluate whether genetic background affected gene expression. Finally, we conducted pathway analysis and upstream analysis using Ingenuity Pathway Analysis to clarify the functions and upstream regulators of symptom-related gene modules. As a result, three gene modules generated by WGCNA were significantly correlated with clinical characteristics, and one of these showed a significant association with PRS. Genes belonging to the transcriptional module associated with PRS significantly overlapped with signaling pathways of multiple sclerosis, neuroinflammation, and opioid use, suggesting that these pathways may also be profoundly implicated in schizophrenia. Upstream analysis indicated that genes in the detected module were profoundly regulated by lipopolysaccharides and CREB. This study identified schizophrenia symptom-related gene sets and their upstream regulators, revealing aspects of the pathophysiology of schizophrenia and identifying potential therapeutic targets.


Assuntos
Redes Reguladoras de Genes , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Estudo de Associação Genômica Ampla , Transcriptoma , Perfilação da Expressão Gênica , Encéfalo/metabolismo
5.
J Psychiatr Res ; 163: 74-79, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207434

RESUMO

Schizophrenia (SZ) and bipolar disorder (BD), which are both psychiatric disorders, share some common clinical evidence. We recently discovered that brain capillary angiopathy is another common feature of these psychiatric disorders using fibrin accumulation in vascular endothelial cells as an indicator. This study aimed to characterize the similarities and differences in cerebral capillary injuries in various brain diseases to provide new diagnostic methods for SZ and BD and to develop new therapeutic strategies. We evaluated whether discrepancies exist in the degree of vascular damage among SZ and BD and other brain disorders (amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD)) using postmortem brains. Our results demonstrate that fibrin was strongly accumulated in the capillaries of the grey matter (GM) of brains of patients with SZ and AD and in the capillaries of the white matter (WM) in those of patients with SZ, BD, and AD when compared with control subjects without any psychiatric or neurological disease history. However, ALS and PD brains did not present a significant increase in the amount of accumulated fibrin, either in the capillaries of WM or GM. Furthermore, significant leakage of fibrin into the brain parenchyma, indicating a vascular physical disruption, was observed in the brains of patients with AD but not in the brains of other patients compared with control subjects. In conclusion, our work reveals that Fibrin-accumulation in the brain capillaries are observed in psychiatric disorders, such as SZ, BD, and AD. Furthermore, fibrin-accumulating, nonbreaking type angiopathy is characteristic of SZ and BD, even though there are regional differences between these diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Transtorno Bipolar , Lesões Encefálicas Traumáticas , Esquizofrenia , Humanos , Transtorno Bipolar/complicações , Esquizofrenia/complicações , Doença de Alzheimer/complicações , Capilares , Células Endoteliais , Encéfalo
6.
Neurochem Res ; 47(9): 2715-2727, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469366

RESUMO

The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.


Assuntos
Córtex Auditivo , Esquizofrenia , Animais , Córtex Auditivo/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Crescimento Epidérmico , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
7.
Neurosci Res ; 175: 73-81, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34543692

RESUMO

The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia , Encéfalo/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Sci Adv ; 7(46): eabl6077, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757783

RESUMO

Metabolic dysfunction is thought to contribute to the severity of psychiatric disorders; however, it has been unclear whether current high­simple sugar diets contribute to pathogenesis of these diseases. Here, we demonstrate that a high-sucrose diet during adolescence induces psychosis-related behavioral endophenotypes, including hyperactivity, poor working memory, impaired sensory gating, and disrupted interneuron function in mice deficient for glyoxalase-1 (GLO1), an enzyme involved in detoxification of sucrose metabolites. Furthermore, the high-sucrose diet induced microcapillary impairments and reduced brain glucose uptake in brains of Glo1-deficient mice. Aspirin protected against this angiopathy, enhancing brain glucose uptake and preventing abnormal behavioral phenotypes. Similar vascular damage to our model mice was found in the brains of randomly collected schizophrenia and bipolar disorder patients, suggesting that psychiatric disorders are associated with angiopathy in the brain caused by various environmental stresses, including metabolic stress.

9.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361045

RESUMO

Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3ß (GSK3ß) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3ß expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.


Assuntos
Fosfatidilinositóis/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Idoso , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Clin Psychopharmacol Neurosci ; 19(3): 572-575, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34294629

RESUMO

Parkinson's disease is often complicated by psychiatric symptoms. Psychiatrists are caught in a dilemma between such symptoms and physical treatment since Parkinson's disease sometimes shows treatment resistance based on pharmacological treatment-induced dopamine dysfunction. Here, we report on a 64-year-old woman with a 15-year history of Parkinson's disease with stage IV severity based on the Hoehn and Yahr scale. She was admitted to our hospital with a diagnosis of major depressive disorder with psychotic features. Unfortunately, her treatment course for depression was complicated by neuroleptic malignant syndrome. Because we were concerned about the persistence of her depressive symptoms, the risk of psychotropic drugs causing adverse effects, and progressive disuse syndrome, we administered modified electroconvulsive therapy. Her symptoms of neuroleptic malignant syndrome and depression sufficiently improved after five sessions of modified electroconvulsive therapy. Additionally, the primary motor symptoms of her Parkinson's disease also markedly improved. The improvement of neuroleptic malignant syndrome and her motor symptoms based on dopamine dysfunction can be explained by electroconvulsive therapy's effectiveness in activating dopamine neurotransmission. Besides, the marked improvement of her depressive episode with psychotic features was presumed to involve dopamine receptor activation and regulation. Because advanced Parkinson's disease can sometimes be refractory to treatment based on pharmacological treatment-induced dopamine dysfunction, psychiatrists often have difficulty treating psychiatric symptoms; electroconvulsive therapy may stabilize the dopaminergic system in such cases, presenting a possible non-pharmacologic treatment option for Parkinson's disease.

11.
Front Psychiatry ; 12: 653821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815179

RESUMO

Recent studies have lent support to the possibility that inflammation is associated with the pathology of schizophrenia. In the study of measurement of inflammatory mediators, which are markers of inflammation, elevated inflammatory cytokine levels in the brain and blood have been reported in patients with schizophrenia. Several postmortem brain studies have also reported changes in the expression of inflammatory cytokines. However, it is not clear how these elevated inflammatory cytokines interact with other inflammatory mediators, and their association with the pathology of schizophrenia. We comprehensively investigated the expression of 30 inflammatory mediators in the superior temporal gyrus (STG) of 24 patients with schizophrenia and 26 controls using a multiplex method. Overall, inflammatory mediator expression in the STG was mostly unchanged. However, the expression of interleukin (IL)1-α and interferon-gamma-inducible protein (IP)-10 was decreased [IL-1α, median (IQR), 0.51 (0.37-0.70) vs. 0.87 (0.47-1.23), p = 0.01; IP-10, 13.99 (8.00-36.64) vs. 30.29 (10.23-134.73), p = 0.05], whereas that of IFN-α was increased [2.34 (1.84-4.48) vs. 1.94 (1.39-2.36), p = 0.04] in schizophrenia, although these alterations did not remain significant after multiple testing. Clustering based on inflammatory mediator expression pattern and analysis of upstream transcription factors using pathway analysis revealed that the suppression of IL-1α and IP-10 protein expression may be induced by regulation of a common upstream pathway. Neuroinflammation is important in understanding the biology of schizophrenia. While neuroimaging has been previously used, direct observation to determine the expression of inflammatory mediators is necessary. In this study, we identified protein changes, previously unreported, using comprehensive protein analysis in STG. These results provide insight into post-inflammatory alternation in chronic schizophrenia.

12.
J Psychiatr Res ; 123: 119-127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065947

RESUMO

BACKGROUND: The molecular mechanisms underlying schizophrenia remain largely unclear, and we recently identified multiple proteins significantly altered in the postmortem prefrontal cortex (PFC) of schizophrenia patients amongst which aldehyde dehydrogenase 4 family member A1 (ALDH4A1) was especially elevated. In this study, we aimed to investigate the expression of ALDH4A1 in the PFC and superior temporal gyrus (STG) and to elucidate functional correlations between schizophrenia risk alleles and molecular expression profiles in the postmortem brains of patients with schizophrenia. METHODS: The levels of ALDH4A1 protein expression in the PFC and STG in postmortem brains from 24 patients with schizophrenia, 8 patients with bipolar disorder, and 32 controls were assessed using enzyme-linked immunosorbent assay. Moreover, we explored the associations between ALDH4A1 expression and genetic variants in enzymes associated with proline metabolism, including ALDH4A1 (schizophrenia [n = 22], bipolar disorder [n = 6], controls [n = 11]). RESULTS: ALDH4A1 levels were significantly elevated in both the PFC and STG in patients with schizophrenia and tended to elevate in patients with bipolar disorder. Furthermore, ALDH4A1 expression levels in the PFC were significantly associated with the following three single-nucleotide polymorphisms: rs10882639, rs33823, rs153508. We also found partial coexpression of ALDH4A1 in mitochondria in a subset of putative astrocytes of postmortem brain. LIMITATIONS: Our study population was relatively small, particularly for a genetic study. CONCLUSION: These findings indicate that altered expression of ALDH4A1 may reflect the potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, and may aid in the development of novel drug therapies.


Assuntos
Transtorno Bipolar , Esquizofrenia , 1-Pirrolina-5-Carboxilato Desidrogenase , Transtorno Bipolar/genética , Encéfalo , Humanos , Córtex Pré-Frontal , Prolina , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA