Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 070502, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142330

RESUMO

Quantum measurement is essential to both the foundations and practical applications of quantum information science. Among many possible models of quantum measurement, feedback measurements that dynamically update their physical structure are highly interesting due to their flexibility, which enables a wide range of measurements that might otherwise be hard to implement. Here we investigate by detector tomography a measurement consisting of a displacement operation combined with photon detection followed by a real time feedback operation. We design the measurement in order to discriminate the superposition of vacuum and single photon states-the single-rail qubit-and find that it can discriminate the superposition states with a certainty of 96%. Such a feedback-controlled photon counter will facilitate the realization of quantum information protocols with single-rail qubits as well as the nonlocality test of certain entangled states.

2.
Sci Rep ; 8(1): 2999, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445101

RESUMO

One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and its variant have been demonstrated experimentally. Here we demonstrate the superposition of coherent states in quantum measurement which is also a key concept in quantum mechanics. More precisely, we propose and implement a projection measurement onto an arbitrary superposition of two weak coherent states in optical system. The measurement operators are reconstructed experimentally by a novel quantum detector tomography protocol. Our device is realized by combining the displacement operation and photon counting, well established technologies, and thus has implications in various optical quantum information processing applications.

3.
Sci Rep ; 4: 7468, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524646

RESUMO

Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

4.
Sci Rep ; 4: 4535, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24694515

RESUMO

Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA