Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(54): 7558-7561, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35708485

RESUMO

We developed here an iodine-containing probe that can be used to identify the molecules of interest in secondary ion mass spectrometry (SIMS) by simple immunolabelling procedures. The immunolabelled iodine probe was readily combined with previously-developed SIMS probes carrying fluorine, to generate dual-channel SIMS data. This probe should provide a useful complement to the currently available SIMS probes, thus expanding the scope of this technology.


Assuntos
Iodo , Espectrometria de Massa de Íon Secundário , Iodetos , Iodo/análise , Espectrometria de Massa de Íon Secundário/métodos
2.
Cell Rep ; 36(8): 109548, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433021

RESUMO

In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons, independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardware upgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience "functional" hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, we show an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation, either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinant human (rh)EPO or exposure to hypoxia recapitulates these changes and reveals the involvement of neuronally expressed IL-34 and microglial CSF1R. Surprisingly, EPO affects microglia in phases, initially by inducing apoptosis, later by reducing proliferation, and overall dampens microglia activity and metabolism, as verified by selective genetic targeting of either the microglial or pyramidal neuronal EPO receptor. We suggest that during accelerating neuronal differentiation, EPO acts as regulator of the CSF1R-dependent microglia.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Hipocampo/metabolismo , Hipóxia Encefálica/metabolismo , Microglia/metabolismo , Neurogênese/efeitos dos fármacos , Células Piramidais/metabolismo , Animais , Diferenciação Celular/genética , Hipóxia Encefálica/tratamento farmacológico , Camundongos , Camundongos Transgênicos
3.
Nat Neurosci ; 24(8): 1151-1162, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168338

RESUMO

Dendritic spines, the postsynaptic compartments of excitatory neurotransmission, have different shapes classified from 'stubby' to 'mushroom-like'. Whereas mushroom spines are essential for adult brain function, stubby spines disappear during brain maturation. It is still unclear whether and how they differ in protein composition. To address this, we combined electron microscopy and quantitative biochemistry with super-resolution microscopy to annotate more than 47,000 spines for more than 100 synaptic targets. Surprisingly, mushroom and stubby spines have similar average protein copy numbers and topologies. However, an analysis of the correlation of each protein to the postsynaptic density mass, used as a marker of synaptic strength, showed substantially more significant results for the mushroom spines. Secretion and trafficking proteins correlated particularly poorly to the strength of stubby spines. This suggests that stubby spines are less likely to adequately respond to dynamic changes in synaptic transmission than mushroom spines, which possibly explains their loss during brain maturation.


Assuntos
Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteoma , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
4.
Cell Rep ; 34(11): 108841, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730575

RESUMO

Synaptic transmission relies on the continual exocytosis and recycling of synaptic vesicles. Aged vesicle proteins are prevented from recycling and are eventually degraded. This implies that active synapses would lose vesicles and vesicle-associated proteins over time, unless the supply correlates to activity, to balance the losses. To test this hypothesis, we first model the quantitative relation between presynaptic spike rate and vesicle turnover. The model predicts that the vesicle supply needs to increase with the spike rate. To follow up this prediction, we measure protein turnover in individual synapses of cultured hippocampal neurons by combining nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence microscopy. We find that turnover correlates with activity at the single-synapse level, but not with other parameters such as the abundance of synaptic vesicles or postsynaptic density proteins. We therefore suggest that the supply of newly synthesized proteins to synapses is closely connected to synaptic activity.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Feminino , Fluorescência , Homeostase , Proteínas de Arcabouço Homer/metabolismo , Masculino , Modelos Neurológicos , Nanotecnologia , Biossíntese de Proteínas , Ratos Wistar , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo
5.
Angew Chem Int Ed Engl ; 58(11): 3438-3443, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30614604

RESUMO

Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo-1,2-dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.


Assuntos
Compostos de Boro/síntese química , Sondas Moleculares/síntese química , Nanopartículas/química , Peptídeos/química , Proteínas/análise , Compostos de Boro/metabolismo , Linhagem Celular , Química Click , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Proteínas/imunologia , Espectrometria de Massa de Íon Secundário , Espectroscopia de Perda de Energia de Elétrons
6.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950309

RESUMO

Aged proteins can become hazardous to cellular function, by accumulating molecular damage. This implies that cells should preferentially rely on newly produced ones. We tested this hypothesis in cultured hippocampal neurons, focusing on synaptic transmission. We found that newly synthesized vesicle proteins were incorporated in the actively recycling pool of vesicles responsible for all neurotransmitter release during physiological activity. We observed this for the calcium sensor Synaptotagmin 1, for the neurotransmitter transporter VGAT, and for the fusion protein VAMP2 (Synaptobrevin 2). Metabolic labeling of proteins and visualization by secondary ion mass spectrometry enabled us to query the entire protein makeup of the actively recycling vesicles, which we found to be younger than that of non-recycling vesicles. The young vesicle proteins remained in use for up to ~ 24 h, during which they participated in recycling a few hundred times. They were afterward reluctant to release and were degraded after an additional ~ 24-48 h. We suggest that the recycling pool of synaptic vesicles relies on newly synthesized proteins, while the inactive reserve pool contains older proteins.


Assuntos
Hipocampo/citologia , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Células Cultivadas , Exocitose/fisiologia , Espectrometria de Massas , Biossíntese de Proteínas/fisiologia , Ratos
7.
Neurophotonics ; 4(2): 020901, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28466025

RESUMO

Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the "history" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology.

8.
Exp Cell Res ; 335(2): 172-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25939282

RESUMO

The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.


Assuntos
Endossomos/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Endocitose , Endossomos/ultraestrutura , Humanos , Terminações Pré-Sinápticas/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
9.
J Physiol ; 587(3): 655-68, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047200

RESUMO

Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.


Assuntos
Peróxido de Hidrogênio/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Peroxirredoxina VI/metabolismo , Regulação para Cima , Animais , Eletroforese em Gel Bidimensional , Inibidores Enzimáticos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Nucleosídeo NM23 Difosfato Quinases/química , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Peroxirredoxina VI/química , Peroxirredoxina VI/genética , Proibitinas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA