Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(34): 20219-20227, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983783

RESUMO

Single-photon multiple photoionization results from electron correlations that make this process possible beyond the independent electron approximation. To study this phenomenon experimentally, the detection in coincidence of all emitted electrons is the most direct approach. It provides the relative contribution of all possible multiple ionization processes, the energy distribution between electrons that can reveal simultaneous or sequential mechanisms, and, if possible, the angular correlations between electrons. In the present work, we present a new magnet design of our magnetic bottle electron spectrometer that allows the detection of multiply charged Xen+ ions in coincidence with n electrons. This new coincidence detection allows more efficient extraction of minor channels that are otherwise masked by random coincidences. The proof of principle is provided for xenon triple ionization.

2.
J Chem Phys ; 148(17): 174301, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29739226

RESUMO

Photon-induced fragmentation of a full set of chlorinated methanes (CH3Cl, CH2Cl2, CHCl3, CCl4) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH3Cl and CH2Cl2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl3 and CCl4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.

3.
J Chem Phys ; 146(14): 144312, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411594

RESUMO

We present calculations on the quantum electrodynamics (QED) effects in 1s and 2s single and double ionization potentials of noble gases from Ne to Rn as perturbations on relativistic four-component Dirac-Fock wavefunctions. The most dominant effect originates from the self-energy of the core-electron that yields corrections of similar order as the transverse interaction. For 1s ionization potentials, a match within few eV against the known experimental values is obtained, and our work reveals considerable QED effects in the photoelectron binding energies across the periodic table-most strikingly even for Ne. We perform power-law fits for the corrections as a function of Z and interpolate the QED correction of ∼-0.55 eV for S1s. Due to this, the K-edge electron spectra of the third row and below need QED for a match in the absolute energy when using state-of-the-art instrumentation.

4.
J Chem Phys ; 146(12): 124902, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28388163

RESUMO

In this work, we apply quantum mechanics/molecular mechanics (QM/MM) approach to predict core-electron binding energies and chemical shifts of polymers, obtainable via X-ray photoelectron spectroscopy(XPS), using polymethyl methacrylate as a demonstration example. The results indicate that standard parametrizations of the quantum part (basis sets, level of correlation) and the molecular mechanics parts (decomposed charges, polarizabilities, and capping technique) are sufficient for the QM/MM model to be predictive for XPS of polymers. It is found that the polymer environment produces contributions to the XPS binding energies that are close to monotonous with the number of monomer units, totally amounting to approximately an eV decrease in binding energies. In most of the cases, the order of the shifts is maintained, and even the relative size of the differential shifts is largely preserved. The coupling of the internal core-hole relaxation to the polymer environment is found to be weak in each case, amounting only to one or two tenths of an eV. The main polymeric effect is actually well estimated already at the frozen orbital level of theory, which in turn implies a substantial computational simplification. These conclusions are best represented by the cases where the ionized monomer and its immediate surrounding are treated quantum mechanically. If the QM region includes only a single monomer, a couple of anomalies are spotted, which are referred to the QM/MM interface itself and to the neglect of a possible charge transfer.

5.
Phys Rev Lett ; 119(13): 133001, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341715

RESUMO

A combination of resonant inelastic x-ray scattering and resonant Auger spectroscopy provides complementary information on the dynamic response of resonantly excited molecules. This is exemplified for CH_{3}I, for which we reconstruct the potential energy surface of the dissociative I 3d^{-2} double-core-hole state and determine its lifetime. The proposed method holds a strong potential for monitoring the hard x-ray induced electron and nuclear dynamic response of core-excited molecules containing heavy elements, where ab initio calculations of potential energy surfaces and lifetimes remain challenging.

6.
J Chem Phys ; 145(2): 024703, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421423

RESUMO

We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

7.
Phys Chem Chem Phys ; 18(4): 2535-47, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700657

RESUMO

Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

8.
J Chem Phys ; 143(7): 074307, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298134

RESUMO

Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.


Assuntos
Compostos de Mercúrio/química , Compostos de Mercúrio/efeitos da radiação , Raios Ultravioleta , Modelos Químicos , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Teoria Quântica
9.
Nat Commun ; 6: 6166, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25607354

RESUMO

Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

10.
J Chem Phys ; 142(3): 034306, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612708

RESUMO

Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li2-8 are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li2 are in a good agreement with the available theoretical data, whereas those computed for Li3-8 clusters can be considered as theoretical predictions.

11.
J Phys Chem B ; 118(46): 13217-25, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25340948

RESUMO

Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.


Assuntos
Etanol/química , Simulação de Dinâmica Molecular , Teoria Quântica , Água/química , Carbono/química , Elétrons , Pressão , Soluções/química , Temperatura , Termodinâmica
12.
J Chem Phys ; 140(18): 184304, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832267

RESUMO

The effect of the spin-orbit interaction to photofragmentation is investigated in the mercury(II) bromide (HgBr2) molecule. Changes in the fragmentation between the two spin-orbit components of Hg 5d photoionization, as well as within the molecular-field-splitted levels of these components are observed. Dissociation subsequent to photoionization is studied with synchrotron radiation and photoelectron-photoion coincidence spectroscopy. The experimental results are accompanied by relativistic ab initio analysis of the photoelectron spectrum.

13.
Phys Rev Lett ; 112(14): 143005, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765953

RESUMO

We provide a final state selective experimental study on the direct double photoionization of the valence states of benzene and pyrrole. The experiment is carried out using a magnetic-bottle electron time-of-flight coincidence setup at the incident photon energy region of 25-120 eV. We discuss on the recently discovered phenomenon of so-called Cooper pair formation [R. Wehlitz et al., Phys. Rev. Lett. 109, 193001 (2012)] and show that our experiment provides contradicting evidence on its existence in the proposed form. We confirm the finding of a new two-electron continuum resonance structure observed at about 30­70 eV above the double ionization threshold in benzene, provide further information from it, and suggest an alternative explanation.

14.
Phys Rev Lett ; 107(18): 183401, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107629

RESUMO

We show that the valence band response to photon impact in metallic nanoparticles is highly energy dependent. This is seen as drastic variations of cross sections in valence photoionization of free and initially charge-neutral nanosized metal clusters. The effect is demonstrated in a combined experimental and theoretical study of Rb clusters. The experimental findings are interpreted theoretically using a jellium model and superatom description. The variations are attributed to the changing overlap with the photon energy between the wave functions of diffuse delocalized valence electrons and continuum electrons producing a series of minima in the cross section.

15.
Phys Rev Lett ; 104(18): 183002, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482170

RESUMO

The absolute cross sections for the competing decay channels fluorescence, dissociation, and ionization of photoexcited long-lived superexcited H(2) molecular levels have been measured from the ionization threshold of H(2) up to the H(1s)+H(n=3) dissociation limit. The total and partial natural widths of these levels have been determined. Good agreement is found with first principles calculations carried out by multichannel quantum defect theory. The calculations reproduce the balance between the competing decay processes as well as its substantial level-to-level evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA