Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16926, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729442

RESUMO

Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon ("Nepartak") hitting KST (12th May, and 2nd-10th July, 2016) were studied within a 10-year time series (2009-2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000-5000 µmol kg-1, and Total Alkalinity (TA) drawdowns were below 1500-1000 µmol kg-1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.

2.
Nat Commun ; 9(1): 1584, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679005

RESUMO

The late Miocene offers the opportunity to assess the sensitivity of the Earth's climate to orbital forcing and to changing boundary conditions, such as ice volume and greenhouse gas concentrations, on a warmer-than-modern Earth. Here we investigate the relationships between low- and high-latitude climate variability in an extended succession from the subtropical northwestern Pacific Ocean. Our high-resolution benthic isotope record in combination with paired mixed layer isotope and Mg/Ca-derived temperature data reveal that a long-term cooling trend was synchronous with intensification of the Asian winter monsoon and strengthening of the biological pump from ~7 Ma until ~5.5 Ma. The climate shift occurred at the end of a global δ13C decrease, suggesting that changes in the carbon cycle involving the terrestrial and deep ocean carbon reservoirs were instrumental in driving late Miocene climate cooling. The inception of cooler climate conditions culminated with ephemeral Northern Hemisphere glaciations between 6.0 and 5.5 Ma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA