Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 661: 124470, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004294

RESUMO

The influence of different preparation methods on the physicochemical properties of amorphous solid forms have gained considerable attention, especially with recent publications on pharmaceutical polyamorphism. In the present study, we have investigated the possible occurrence of polyamorphism in the drug celecoxib (CEL) by investigating the thermal behavior, morphology, structure, molecular mobility and physical stability of amorphous CEL obtained by quench-cooling (QC), ball milling (BM) and spray drying (SD). Similar glass transition temperatures but different recrystallization behaviors were observed for CEL-QC, CEL-BM and CEL-SD using modulated differential scanning calorimetry analysis. A correlation between the different recrystallization behaviors of the three CEL amorphous forms and the respective distinct powder morphologies, was also found. Molecular dynamics simulations however, reveal that CEL presents similar molecular conformational distributions when subjected to QC and SD. Moreover, the obtained molecular conformational distributions of CEL are different from the ones found in its crystal structure and also from the ones found in the lowest-energy structure obtained by quantum mechanical calculations. The type and strength of CEL hydrogen bond interactions found in CEL-QC and CEL-SD systems are almost identical, though different from the ones presented in the crystal structure. Pair distribution function analyses and isothermal microcalorimetry show similar local structures and structural relaxation times, respectively, for CEL-QC, CEL-BM and CEL-SD. The present work shows that not only similar physicochemical properties (glass transition temperature, and structural relaxation time), but also similar molecular conformational distributions were observed for all prepared CEL amorphous systems. Hence, despite their different recrystallization behaviors, the three amorphous forms of CEL did not show any signs of polyamorphism.


Assuntos
Varredura Diferencial de Calorimetria , Celecoxib , Cristalização , Simulação de Dinâmica Molecular , Temperatura de Transição , Celecoxib/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Pós/química
2.
Inorg Chem ; 62(32): 13021-13029, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37537143

RESUMO

Manganese dioxide is a good candidate for effective energy storage and conversion as it possesses rich electrochemistry. The compound also shows a wide polymorphism. The γ-variety, an intergrowth of ß- and R-MnO2, has been extensively studied in several types of batteries (e.g., Zn/MnO2, Li-ion) and is a common electrode material for commercial batteries. It is well known that the insertion of protons thermodynamically stabilizes γ-MnO2 with respect to ß-MnO2. Protons can enter the structure either by forming groups of 4 hydroxyls around a Mn4+ vacancy, called a Ruetschi defect, or by forming a hydroxyl group near a Mn3+ ion, called a Coleman defect. These defects differently affect the electrochemistry of manganese oxide, and tailoring their amount in the structure can be used to tune the material properties. Previous studies have addressed the proton insertion process, but the role of the synthesis pathway on the amount of defects created is not well understood. We here investigate how the parameters in a hydrothermal synthesis of γ-MnO2 nanoparticles influence the amount and type of H-related defects. Structural investigations are carried out using Pair Distribution Function analysis, X-ray absorption spectroscopy, thermogravimetric analysis, and inelastic neutron scattering. We demonstrate the possibility to control the amount and type of defects introduced during the synthesis. While the amount of Ruetschi defects increases with synthesis temperature, it decreases with extended synthesis time, along with the amount of Coleman defects. Moreover, we discuss the arrangement of the defects in the γ-MnO2 nanoparticles.

3.
J Appl Crystallogr ; 56(Pt 3): 825-833, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284263

RESUMO

Here the use of a broad energy bandwidth monochromator, i.e. a pair of B4C/W multilayer mirrors (MLMs), is demonstrated for X-ray total scattering (TS) measurements and pair distribution function (PDF) analysis. Data are collected both on powder samples and from metal oxo clusters in aqueous solution at various concentrations. A comparison between the MLM PDFs and those obtained using a standard Si(111) double-crystal monochromator shows that the measurements yield MLM PDFs of high quality which are suitable for structure refinement. Moreover, the effects of time resolution and concentration on the quality of the resulting PDFs of the metal oxo clusters are investigated. PDFs of heptamolybdate clusters and tungsten α-Keggin clusters from X-ray TS data were obtained with a time resolution down to 3 ms and still showed a similar level of Fourier ripples to PDFs obtained from 1 s measurements. This type of measurement could thus open up faster time-resolved TS and PDF studies.

4.
Chem Mater ; 35(5): 2173-2190, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936178

RESUMO

Gold nanoparticles (Au NPs) and gold-based nanomaterials combine unique properties relevant for medicine, imaging, optics, sensing, catalysis, and energy conversion. While the Turkevich-Frens and Brust-Schiffrin methods remain the state-of-the-art colloidal syntheses of Au NPs, there is a need for more sustainable and tractable synthetic strategies leading to new model systems. In particular, stabilizers are almost systematically used in colloidal syntheses, but they can be detrimental for fundamental and applied studies. Here, a surfactant-free synthesis of size-controlled colloidal Au NPs stable for months is achieved by the simple reduction of HAuCl4 at room temperature in alkaline solutions of low-viscosity mono-alcohols such as ethanol or methanol and water, without the need for any other additives. Palladium (Pd) and bimetallic Au x Pd y NPs, nanocomposites and multimetallic samples, are also obtained and are readily active (electro)catalysts. The multiple benefits over the state-of-the-art syntheses that this simple synthesis bears for fundamental and applied research are highlighted.

5.
Dalton Trans ; 51(41): 15806-15815, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36185033

RESUMO

Metal closo-boranes have recently received significant attention as solid-state electrolytes due to their high thermal and electrochemical stability, and the weak interaction between the cat- and anion, facilitating fast ionic conductivity. Here we report a synthesis method for obtaining a novel mixed closo-carborane compound, [NH(CH3)3][(CB8H9)0.26(CB9H10)0.66(CB11H12)0.08]. The crystal structures are investigated for [NH(CH3)3][CB9H10] and [NH(CH3)3][(CB8H9)0.26(CB9H10)0.66(CB11H12)0.08], revealing that the latter forms a solid solution isostructural to [NH(CH3)3][CB9H10]. The compounds exhibit polymorphism as a function of temperature, and we report the discovery of four polymorphs of [NH(CH3)3][CB9H10] and four isostructural solid solution [NH(CH3)3][(CB8H9)0.26(CB9H10)0.66(CB11H12)0.08], along with a high-temperature decomposition intermediate of the latter. The α-polymorph is an ordered structure, with increasing amounts of disorder for the ß- and γ-polymorphs, while the high temperature δ- and ε-polymorphs at T > 476 K are fully disordered on both the cation and anion site. These new compounds may be used as precursors for new types of solid-state ionic conductors.

6.
Phys Chem Chem Phys ; 23(29): 15719-15726, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279530

RESUMO

Glassy films of cis-methyl formate show spontaneous dipole orientation on deposition from the vacuum, the so-called 'spontelectric effect', creating surface potentials and electric fields within the films. We follow the decay of these fields, and their accompanying dipole orientation, on the hours timescale at deposition temperatures between 40 K and 55 K. Our data trace the low temperature 'secondary decay' mechanism, at tens of degrees below the glass transition temperature of 90 K. We show that secondary decay is due to molecular rotation, with associated activation energies lying between 0.1 and 0.2 eV. Diffusion is absent, as established from published neutron reflectivity data. Using an analytical model for the spontelectric effect, data are placed on a quantitative footing, showing that angular motion in excess of 50° reproduces the observed values of activation energies. Exploitation of the spontelectric effect is new in the study of glass aging and is shown here to give insight into the elusive processes which take place far from the molecular glass transition temperature.

7.
Chem Commun (Camb) ; 57(52): 6368-6371, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34105533

RESUMO

Measurements of the decay of electric fields, formed spontaneously within vapour-deposited films of cis-methyl formate, provide the first direct assessment of the energy barrier to secondary relaxation in a molecular glass. At temperatures far below the glass transition temperature, the mechanism of relaxation is shown to be through hindered molecular rotation. Magnetically-polarised neutron scattering experiments exclude diffusion, which is demonstrated to take place only close to the glass transition temperature.

8.
IUCrJ ; 8(Pt 1): 33-45, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520241

RESUMO

Spinel iron oxide nanoparticles of different mean sizes in the range 10-25 nm have been prepared by surfactant-free up-scalable near- and super-critical hydro-thermal synthesis pathways and characterized using a wide range of advanced structural characterization methods to provide a highly detailed structural description. The atomic structure is examined by combined Rietveld analysis of synchrotron powder X-ray diffraction (PXRD) data and time-of-flight neutron powder-diffraction (NPD) data. The local atomic ordering is further analysed by pair distribution function (PDF) analysis of both X-ray and neutron total-scattering data. It is observed that a non-stoichiometric structural model based on a tetragonal γ-Fe2O3 phase with vacancy ordering in the structure (space group P43212) yields the best fit to the PXRD and total-scattering data. Detailed peak-profile analysis reveals a shorter coherence length for the superstructure, which may be attributed to the vacancy-ordered domains being smaller than the size of the crystallites and/or the presence of anti-phase boundaries, faulting or other disorder effects. The intermediate stoichiometry between that of γ-Fe2O3 and Fe3O4 is confirmed by refinement of the Fe/O stoichiometry in the scattering data and quantitative analysis of Mössbauer spectra. The structural characterization is complemented by nano/micro-structural analysis using transmission electron microscopy (TEM), elemental mapping using scanning TEM, energy-dispersive X-ray spectroscopy and the measurement of macroscopic magnetic properties using vibrating sample magnetometry. Notably, no evidence is found of a Fe3O4/γ-Fe2O3 core-shell nanostructure being present, which had previously been suggested for non-stoichiometric spinel iron oxide nanoparticles. Finally, the study is concluded using the magnetic PDF (mPDF) method to model the neutron total-scattering data and determine the local magnetic ordering and magnetic domain sizes in the iron oxide nanoparticles. The mPDF data analysis reveals ferrimagnetic collinear ordering of the spins in the structure and the magnetic domain sizes to be ∼60-70% of the total nanoparticle sizes. The present study is the first in which mPDF analysis has been applied to magnetic nanoparticles, establishing a successful precedent for future studies of magnetic nanoparticles using this technique.

9.
Chemistry ; 25(27): 6814-6822, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30821859

RESUMO

The covalent nature of the low-barrier N-H-N hydrogen bonds in the negative thermal expansion material H3 [Co(CN)6 ] has been established by using a combination of X-ray and neutron diffraction electron density analysis and theoretical calculations. This finding explains why negative thermal expansion can occur in a material not commonly considered to be built from rigid linkers. The pertinent hydrogen atom is located symmetrically between two nitrogen atoms in a double-well potential with hydrogen above the barrier for proton transfer, thus forming a low-barrier hydrogen bond. Hydrogen is covalently bonded to the two nitrogen atoms, which is the first experimentally confirmed covalent hydrogen bond in a network structure. Source function calculations established that the present N-H-N hydrogen bond follows the trends observed for negatively charge-assisted hydrogen bonds and low-barrier hydrogen bonds previously established for O-H-O hydrogen bonds. The bonding between the cobalt and cyanide ligands was found to be a typical donor-acceptor bond involving a high-field ligand and a transition metal in a low-spin configuration.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 521-530, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762964

RESUMO

In recent years powder X-ray diffraction has proven to be a valuable alternative to single-crystal X-ray diffraction for determining electron-density distributions in high-symmetry inorganic materials, including subtle deformation in the core electron density. This was made possible by performing diffraction measurements in vacuum using high-energy X-rays at a synchrotron-radiation facility. Here we present a new version of our custom-built in-vacuum powder diffractometer with the sample-to-detector distance increased by a factor of four. In practice this is found to give a reduction in instrumental peak broadening by approximately a factor of three and a large improvement in signal-to-background ratio compared to the previous instrument. Structure factors of silicon at room temperature are extracted using a combined multipole-Rietveld procedure and compared with ab initio calculations and the results from the previous diffractometer. Despite some remaining issues regarding peak asymmetry, the new diffractometer yields structure factors of comparable accuracy to the previous diffractometer at low angles and improved accuracy at high angles. The high quality of the structure factors is further assessed by modelling of core electron deformation with results in good agreement with previous investigations.

11.
IUCrJ ; 2(Pt 5): 563-74, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306198

RESUMO

Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

12.
Adv Mater ; 27(29): 4330-5, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26076654

RESUMO

In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation.


Assuntos
Compostos de Bário/química , Nióbio/química , Óxidos/química , Potássio/química , Titânio/química , Eletricidade , Chumbo/química , Nanoestruturas/química , Difração de Nêutrons , Transdutores , Difração de Raios X
13.
Artigo em Inglês | MEDLINE | ID: mdl-25643711

RESUMO

Four datasets on [2,2]-paracyclophane were collected in-house and at the Advanced Photon Source at two different temperatures for charge density investigation. Global data quality indicators such as high resolution, high I/σ(I) values, low merging R values and high multiplicity were matched for all four datasets. The structural parameters did not show significant differences, but the synchrotron data depicted deficiencies in the topological analysis. In retrospect these deficiencies could be assigned to the low quality of the innermost data, which could have been identified by e.g. merging R values for only these reflections. In the multipole refinement these deficiencies could be monitored using DRK-plot and residual density analysis. In this particular example the differences in the topological parameters were relatively small but significant.

14.
Inorg Chem ; 53(23): 12489-98, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25383889

RESUMO

A combined experimental and theoretical electron density study of the shortest trichromium metal wire, Cr3(dpa)4Cl2·(C2H5OC2H5)(x)(CH2Cl2)(1-x) (1, dpa = bis(2-pyridyl)amido), is reported. High resolution X-ray diffraction data has been collected both at 100 K using a conventional X-ray source (DS1) and at 15 K using a synchrotron X-ray source (DS2). The linear chromium string is terminated by Cl(-) ions at both ends, and each Cr atom is also coordinated by four N atoms from bridging dpa ligands. The two Cr-Cr bond distances are unequal at 100 K (with d(Cr1-Cr2) being 0.029 Å shorter than d(Cr2-Cr3)) but at 15 K they are almost equal (0.002 Å difference). Analysis of the slightly elongated thermal ellipsoids of the Cr2 atom suggests that it is not due to disorder, but the presence of a shallow potential energy surface. Laplacian maps clearly show local valence shell charge concentration (VSCC) in the electron density along the bisector of the equatorial Cr-N bonds. Integration over the atomic basins indicates that Cr2 has smaller atomic charge and volume than Cr1 and Cr3. The topological characterization of the Cr-Cr bonds indicates partly covalent characters with electron density at the bond critical point of ∼0.3 e Å(-3) and negative total energy density. The delocalization index of Cr-Cr is 0.8 for Cr1-Cr2 and 0.08 for Cr1-Cr3. Second-order perturbation analysis shows high stabilization energy of the Cr-Cr bonds (E(2) ∼ 190 kcal mol(-1)). Delocalization indices and source function and natural bond orbital analyses are all indicative of localized Cr-Cr bonding interactions.

15.
IUCrJ ; 1(Pt 5): 267-80, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25295169

RESUMO

Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined.

16.
Inorg Chem ; 53(21): 11531-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25330274

RESUMO

The electron densities in two analogous dimetallic transition metal compounds, namely, [M2(µ-OH2)((t)BuCOO)4((t)BuCOOH)2(C5H5N)2] (M = Co(1), Ni(2)), were determined from combined X-ray and neutron single-crystal diffraction at 100 K. Excellent correspondence between the thermal parameters from X- and N-derived atomic displacement parameters is found, indicating high-quality X-ray data and a successful separation of thermal and electronic effects. Topological analysis of electron densities derived from high-resolution X-ray diffraction, as well as density functional theory calculations, shows no direct metal-metal bonding in either compound, while the total energy density at the bond critical points suggests stronger metal-oxygen interactions for the Ni system, in correspondence with its shorter bond distances. The analysis also allows for estimation of the relative strength of binding of terminal and bridging ligands to the metals, showing that the bridging water molecule is more strongly bound than terminal carboxylic acid, but less so than bridging carboxylates. Recently, modeling of magnetic and spectroscopic data in both of these systems has shown weak ferromagnetic interactions between the metal atoms. Factors related to large zero-field splitting effects complicate the magnetic analysis in both compounds, albeit to a much greater degree in 1. The current results support the conclusion drawn from previous magnetic and spectroscopic measurements that there is no appreciable direct communication between metal centers.


Assuntos
Cobalto/química , Elétrons , Níquel/química , Compostos Organometálicos/química , Água/química , Cristalografia por Raios X , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química
17.
Chemistry ; 20(26): 8089-98, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24828367

RESUMO

X-ray/neutron (X/N) diffraction data measured at very low temperature (15 K) in conjunction with ab initio theoretical calculations were used to model the crystal charge density (CD) of the host-guest complex of hydroquinone (HQ) and acetonitrile. Due to pseudosymmetry, information about the ordering of the acetonitrile molecules within the HQ cavities is present only in almost extinct, very weak diffraction data, which cannot be measured with sufficient accuracy even by using the brightest X-ray and neutron sources available, and the CD model of the guest molecule was ultimately based on theoretical calculations. On the other hand, the CD of the HQ host structure is well determined by the experimental data. The neutron diffraction data provide hydrogen anisotropic thermal parameters and positions, which are important to obtain a reliable CD for this light-atom-only crystal. Atomic displacement parameters obtained independently from the X-ray and neutron diffraction data show excellent agreement with a |ΔU| value of 0.00058 Å(2) indicating outstanding data quality. The CD and especially the derived electrostatic properties clearly reveal increased polarization of the HQ molecules in the host-guest complex compared with the HQ molecules in the empty HQ apohost crystal structure. It was found that the origin of the increased polarization is inclusion of the acetonitrile molecule, whereas the change in geometry of the HQ host structure following inclusion of the guest has very little effect on the electrostatic potential. The fact that guest inclusion has a profound effect on the electrostatic potential suggests that nonpolarizable force fields may be unsuitable for molecular dynamics simulations of host-guest interaction (e.g., in protein-drug complexes), at least for polar molecules.

18.
Chemistry ; 19(1): 195-205, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23169277

RESUMO

Mixed-valence trinuclear carboxylates, [M(3)O(O(2)CR)(6)L(3)] (M = metal, L = terminal ligand), have small differences in potential energy between the configurations M(II)M(III)M(III)⇔M(III)M(II)M(III)⇔M(III)M(III)M(II), which means that small external changes can have large structural effects, owing to the differences in coordination geometry between M(2+) and M(3+) sites (e.g., about 0.2 Šfor Fe-O bond lengths). It is well-established that the electron transfer (ET) between the metal sites in these mixed-valence molecules is strongly dependent on temperature and on the specific crystal environment; however, herein, for the first time, we examine the effect of pressure on the electron transfer. Based on single-crystal X-ray diffraction data that were measured at 15, 90, 100, 110, 130, 160, and 298 K on three different crystals, we first unexpectedly found that our batch of Fe(3)O (O(2)CC(CH(3))(3))(6)(C(5)H(5)N)(3) (1) exhibited a different temperature dependence of the ET process than previous studies of compound 1 have shown. We observed a phase transition at around 130 K that was related to complete valence trapping and Hirshfeld surface analysis revealed that this phase transition was governed by a subtle competition between C-H⋅⋅⋅π and π⋅⋅⋅π intermolecular interactions. Subsequent high-pressure single-crystal X-ray diffraction at pressures of 0.15, 0.35, 0.45, 0.74, and 0.96 GPa revealed that it was not possible to trigger the phase transition (i.e., valence trapping) by a reduction of the unit-cell volume, owing to this external pressure. We conclude that modulation of the ET process requires anisotropic changes in the intermolecular interactions, which occur when various directional chemical bonds are affected differently by changes in temperature, but not by the application of pressure.


Assuntos
Ácidos Carboxílicos/química , Compostos Férricos/química , Compostos Organometálicos/química , Catálise , Eletroquímica , Transporte de Elétrons , Ligantes , Modelos Moleculares , Pressão , Temperatura , Termodinâmica , Difração de Raios X
19.
Inorg Chem ; 52(1): 297-305, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23214722

RESUMO

We present a combined experimental and theoretical charge density study of the coordination polymer Zn(HCOO)(2)(H(2)O)(2), which serves as a nonmagnetic reference for the isostructural magnetic compounds containing 3d transition metals. The charge density has been modeled using the multipole formalism against a high-resolution single-crystal X-ray diffraction data set collected at 100 K. The theoretical model is based on periodic density functional theory calculations in the experimental geometry. To gauge the degree of systematic bias from the multipole model, the structure factors of the theoretical model were also projected into a multipole model and the two theoretical models are compared with the experimental results. All models, both experiment and theory, show that the Zn atom densities are highly spherical but show small accumulations of charge toward the negative ligands. The metal-ligand interactions are found to be primarily ionic, but there are subtle topological indications of covalent contributions to the bonds. The source function calculated at the bond critical points reveals a rather delocalized picture of the density in the bridging carboxylates, and this presumably reflects the exchange pathway in the magnetic analogues.


Assuntos
Formiatos/química , Compostos Organometálicos/química , Polímeros/química , Teoria Quântica , Água/química , Zinco/química , Cristalografia por Raios X , Modelos Moleculares , Compostos Organometálicos/síntese química
20.
Inorg Chem ; 51(15): 8607-16, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22834961

RESUMO

One of the most basic concepts in chemical bonding theory is the octet rule, which was introduced by Lewis in 1916, but later challenged by Pauling to explain the bonding of third-row elements. In the third row, the central atom was assumed to exceed the octet by employing d orbitals in double bonding leading to hypervalency. Ever since, polyoxoanions such as SO(4)(2-), PO(4)(3-), and ClO(4)(-) have been paradigmatic examples for the concept of hypervalency in which the double bonds resonate among the oxygen atoms. Here, we examine S-O bonding by investigating the charge density of the sulfate group, SO(4)(2-), within a crystalline environment based both on experimental and theoretical methods. K(2)SO(4) is a high symmetry inorganic solid, where the crystals are strongly affected by extinction effects. Therefore, high quality, very low temperature single crystal X-ray diffraction data were collected using a small crystal (∼30 µm) and a high-energy (30 keV) synchrotron beam. The experimental charge density was determined by multipole modeling, whereas a theoretical density was obtained from periodic ab initio DFT calculations. The chemical bonding was jointly analyzed within the framework of the Quantum Theory of Atoms In Molecules only using quantities derived from an experimental observable (the charge density). The combined evidence suggests a bonding situation where the S-O interactions can be characterized as highly polarized, covalent bonds, with the "single bond" description significantly prevailing over the "double bond" picture. Thus, the study rules out the hypervalent description of the sulfur atom in the sulfate group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA