Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(7): 215, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347316

RESUMO

CONTEXT: Recently, a new 2D carbon allotrope named biphenylene network (BPN) was experimentally realized. Here, we use density functional theory (DFT) calculations to study its boron nitride analogue sheet's structural, electronic, and optical properties (BN-BPN). Results suggest that BN-BPN has good structural and dynamic stabilities. It also has a direct bandgap of 4.5 eV and significant optical activity in the ultraviolet range. BN-BPN Young's modulus varies between 234.4[Formula: see text]273.2 GPa depending on the strain direction. METHODS: Density functional theory (DFT) simulations for the electronic and optical properties of BN-BPN were performed using the CASTEP package within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) and the hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). For convenience, the mechanical properties were carried out using the DFT approach implemented in the SIESTA code, also within the scope of the GGA/PBE method. We used the double-zeta plus polarization (DZP) for the basis set in these cases. Moreover, the norm-conserving Troullier-Martins pseudopotential was employed to describe the core electrons.


Assuntos
Carbono , Eletrônica , Módulo de Elasticidade , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA