Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760585

RESUMO

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.

2.
Sci Rep ; 13(1): 20366, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990121

RESUMO

Diffusion-MRI (dMRI) measures molecular diffusion, which allows to characterize microstructural properties of the human brain. Gliomas strongly alter these microstructural properties. Delineation of brain tumors currently mainly relies on conventional MRI-techniques, which are, however, known to underestimate tumor volumes in diffusely infiltrating glioma. We hypothesized that dMRI is well suited for tumor delineation, and developed two different deep-learning approaches. The first diffusion-anomaly detection architecture is a denoising autoencoder, the second consists of a reconstruction and a discrimination network. Each model was exclusively trained on non-annotated dMRI of healthy subjects, and then applied on glioma patients' data. To validate these models, a state-of-the-art supervised tumor segmentation network was modified to generate groundtruth tumor volumes based on structural MRI. Compared to groundtruth segmentations, a dice score of 0.67 ± 0.2 was obtained. Further inspecting mismatches between diffusion-anomalous regions and groundtruth segmentations revealed, that these colocalized with lesions delineated only later on in structural MRI follow-up data, which were not visible at the initial time of recording. Anomaly-detection methods are suitable for tumor delineation in dMRI acquisitions, and may further enhance brain-imaging analysis by detection of occult tumor infiltration in glioma patients, which could improve prognostication of disease evolution and tumor treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador/métodos
3.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609137

RESUMO

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.

4.
Cancers (Basel) ; 15(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345051

RESUMO

Previous studies suggest that the topological properties of structural and functional neural networks in glioma patients are altered beyond the tumor location. These alterations are due to the dynamic interactions with large-scale neural circuits. Understanding and describing these interactions may be an important step towards deciphering glioma disease evolution. In this study, we analyze structural and functional brain networks in terms of determining the correlation between network robustness and topological features regarding the default-mode network (DMN), comparing prognostically differing patient groups to healthy controls. We determine the driver nodes of these networks, which are receptive to outside signals, and the critical nodes as the most important elements for controllability since their removal will dramatically affect network controllability. Our results suggest that network controllability and robustness of the DMN is decreased in glioma patients. We found losses of driver and critical nodes in patients, especially in the prognostically less favorable IDH wildtype (IDHwt) patients, which might reflect lesion-induced network disintegration. On the other hand, topological shifts of driver and critical nodes, and even increases in the number of critical nodes, were observed mainly in IDH mutated (IDHmut) patients, which might relate to varying degrees of network plasticity accompanying the chronic disease course in some of the patients, depending on tumor growth dynamics. We hereby implement a novel approach for further exploring disease evolution in brain cancer under the aspects of neural network controllability and robustness in glioma patients.

5.
Sci Rep ; 13(1): 7389, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149638

RESUMO

The pathophysiology of degenerative cervical myelopathy (DCM) is characterized by chronic compression-induced damage to the spinal cord leading to secondary harm such as disruption of the blood spinal cord barrier (BSCB). It is therefore the purpose of this study to analyze BSCB disruption in pre- and postoperative DCM patients and to correlate those with the clinical status and postoperative outcome. This prospectively controlled cohort included 50 DCM patients (21 female; 29 male; mean age: 62.9 ± 11.2 years). As neurological healthy controls, 52 (17 female; 35 male; mean age 61.8 ± 17.3 years) patients with thoracic abdominal aortic aneurysm (TAAA) and indication for open surgery were included. All patients underwent a neurological examination and DCM-associated scores (Neck Disability Index, modified Japanese Orthopaedic Association Score) were assessed. To evaluate the BSCB status, blood and cerebrospinal fluid (CSF) samples (lumbar puncture or CSF drainage) were taken preoperatively and in 15 DCM patients postoperatively (4 female; 11 male; mean age: 64.7 ± 11.1 years). Regarding BSCB disruption, CSF and blood serum were examined for albumin, immunoglobulin (Ig) G, IgA and IgM. Quotients for CSF/serum were standardized and calculated according to Reiber diagnostic criteria. Significantly increased preoperative CSF/serum quotients were found in DCM patients as compared to control patients: AlbuminQ (p < .001), IgAQ (p < .001) and IgGQ (p < .001). IgMQ showed no significant difference (T = - 1.15, p = .255). After surgical decompression, neurological symptoms improved in DCM patients, as shown by a significantly higher postoperative mJOA compared to the preoperative score (p = .001). This neurological improvement was accompanied by a significant change in postoperative CSF/serum quotients for Albumin (p = .005) and IgG (p = .004) with a trend of a weak correlation between CSF markers and neurological recovery. This study further substantiates the previous findings, that a BSCB disruption in DCM patients is evident. Interestingly, surgical decompression appears to be accompanied by neurological improvement and a reduction of CSF/serum quotients, implying a BSCB recovery. We found a weak association between BSCB recovery and neurological improvement. A BSCB disruption might be a key pathomechanism in DCM patients, which could be relevant to treatment and clinical recovery.


Assuntos
Vértebras Cervicais , Doenças da Medula Espinal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Estudos Prospectivos , Vértebras Cervicais/cirurgia , Doenças da Medula Espinal/diagnóstico , Descompressão Cirúrgica/efeitos adversos , Imunoglobulina A , Imunoglobulina M , Resultado do Tratamento
7.
Brain Sci ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358389

RESUMO

Metacognition has only scarcely been investigated in brain tumor patients. It is unclear if and how the tumor-lesioned brain might be able to maintain an adequate sense-of-self. As cortical midline structures (CMS) are regarded as essential for self-referential mental activity, we investigated resting-state fMRI connectivity (FC) of CMS to the default-mode network (DMN) and to the whole brain, comparing glioma patients and matched controls. Subjects furthermore performed a trait judgement (TJ), a trait recall task (TR), and neuropsychological testing. In the TJ, adjectives had to be ascribed as self- or non-self-describing, assessing the self-serving effect (SSE), a normally observed bias for positive traits. In the TR, the mnemic neglect effect (MNE), a memory advantage for positive traits, was tested. The groups were compared and partial correlations between FC and test metrics were analyzed. Although patients were significantly impaired in terms of verbal memory, groups did not differ in the SSE or the MNE results, showing preserved metacognitive abilities in patients. FC of CMS to the DMN was maintained, but was significantly decreased to whole brain in the patients. FC of the dorsomedial prefrontal cortex (DMPFC) to whole brain was correlated with the MNE in patients. Preserving the DMPFC in therapeutic interventions might be relevant for maintaining self-related verbal information processing in the memory domain in glioma patients.

8.
Sci Rep ; 11(1): 16790, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408195

RESUMO

With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Glioma/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Glioma/patologia , Glioma/ultraestrutura , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/patologia , Giro do Cíngulo/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/ultraestrutura
9.
Neuroimage Clin ; 30: 102624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33773163

RESUMO

This study investigated supra- and infratentorial structural gray and white matter (GM, WM) alterations in patients with degenerative cervical myelopathy (DCM) as an indicator of secondary harm due to chronic cervical cord compression and micro trauma. With MRI-based anatomical assessment and subsequent voxel-based morphometry analyses, pre- and postoperative volume alterations in the primary motor cortex (MI), the primary somatosensory cortex (SI), the supplementary motor area (SMA), and the cerebellum were analyzed in 43 DCM patients and 20 controls. We assessed disease-related symptom severity by the modified Japanese Orthopaedic Association scale (mJOA). The study also explored symptom severity-based brain volume alterations as well as their association with clinical status. Patients had lower mJOA scores (p = .000) and lower GM volume than controls in SI (p = .016) and cerebellar regions (p = .001). Symptom severity-based subgroup analyses revealed volume reductions in almost all investigated GM ROIs (MI: p = .001; CB: p = .040; SMA: p = .007) in patients with severe clinical symptoms as well as atrophy already present in patients with moderate symptom severity. Clinical symptoms in DCM were associated with cortical and cerebellar volume reduction. GM volume alterations may serve as an indicator of both disease severity and ongoing disease progression in DCM, and should be considered in further patient care and treatment monitoring.


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Substância Branca , Cerebelo , Humanos , Imageamento por Ressonância Magnética
10.
PLoS One ; 15(9): e0239475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976545

RESUMO

Diffusion-weighted MRI makes it possible to quantify subvoxel brain microstructure and to reconstruct white matter fiber trajectories with which structural connectomes can be created. However, at the border between cerebrospinal fluid and white matter, or in the presence of edema, the obtained MRI signal originates from both the cerebrospinal fluid as well as from the white matter partial volume. Diffusion tractography can be strongly influenced by these free water partial volume effects. Thus, including a free water model can improve diffusion tractography in glioma patients. Here, we analyze how including a free water model influences structural connectivity estimates in healthy subjects as well as in brain tumor patients. During a clinical study, we acquired diffusion MRI data of 35 glioma patients and 28 age- and sex-matched controls, on which we applied an open-source deep learning based free water model. We performed deterministic as well as probabilistic tractography before and after free water modeling, and utilized the tractograms to create structural connectomes. Finally, we performed a quantitative analysis of the connectivity matrices. In our experiments, the number of tracked diffusion streamlines increased by 13% for high grade glioma patients, 9.25% for low grade glioma, and 7.65% for healthy controls. Intra-subject similarity of hemispheres increased significantly for the patient as well as for the control group, with larger effects observed in the patient group. Furthermore, inter-subject differences in connectivity between brain tumor patients and healthy subjects were reduced when including free water modeling. Our results indicate that free water modeling increases the similarity of connectivity matrices in brain tumor patients, while the observed effects are less pronounced in healthy subjects. As the similarity between brain tumor patients and healthy controls also increased, connectivity changes in brain tumor patients may have been overestimated in studies that did not perform free water modeling.


Assuntos
Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Glioma/patologia , Água/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Conectoma/métodos , Aprendizado Profundo , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Substância Branca/patologia , Adulto Jovem
11.
Hum Brain Mapp ; 41(16): 4549-4561, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32716597

RESUMO

Resting-state functional MRI (rs-fMRI) allows mapping temporally coherent brain networks, and intra- and inter-network alterations have been described in different diseases. This prospective study investigated hemispheric resting-state functional connectivity (RSFC) differences in the default-mode network (DMN) and fronto-parietal network (FPN) between patients with left- and right-hemispheric gliomas (LH PAT, RH PAT), addressing asymmetry effects the tumor might have on network-specific intrinsic functional connectivity under consideration of the prognostically relevant isocitrate-dehydrogenase (IDH) mutation status. Twenty-seven patients (16 LH PAT, 12 IDH-wildtype) and 27 healthy controls underwent anatomical and rs-fMRI as well as neuropsychological assessment. Independent component analyses were performed to identify the DMN and FPN. Hemispheric DMN- and FPN-RSFC were computed, compared across groups, and correlated with cognitive performance. Patient groups did not differ in tumor volume, grade or location. RH PAT showed higher contra-tumoral DMN-RSFC than controls and LH PAT. With regard to the FPN, contra-tumoral RSFC was increased in both patient groups as compared to controls. Higher contra-tumoral RSFC was associated with worse cognitive performance in patients, which, however, seemed to apply mainly to IDH-wildtype patients. The benefit of RSFC alterations for cognitive performance varied depending on the affected hemisphere, cognitive demand, and seemed to be altered by IDH-mutation status. At the time of study initiation, a clinical trial registration was not mandatory at our faculty, but it can be applied for if requested.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Glioma/fisiopatologia , Imageamento por Ressonância Magnética , Adulto , Idoso , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Feminino , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa , Testes Neuropsicológicos
12.
Front Oncol ; 9: 536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293974

RESUMO

Immunohistochemical data based on isocitrate-dehydrogenase (IDH) mutation status have redefined glioma as a whole-brain disease, while occult tumor cell invasion along white matter fibers is inapparent in conventional magnetic resonance imaging (MRI). The functional and prognostic impact of focal glioma may however relate to the extent of white matter involvement. We used diffusion tensor imaging (DTI) to investigate microstructural characteristics of whole-brain normal-appearing white matter (NAWM) in relation to cognitive functions as potential surrogates for occult white matter involvement in glioma. Twenty patients (12 IDH-mutated) and 20 individually matched controls were preoperatively examined using DTI combined with a standardized neuropsychological examination. Tumor lesions including perifocal edema were masked, and fractional anisotropy (FA) as well as mean, radial, and axial diffusivity (MD, RD, and AD, respectively) of the remaining whole-brain NAWM were determined by using Tract-Based Spatial Statistics and histogram analyses. The relationship between extratumoral white matter integrity and cognitive performance was examined using partial correlation analyses controlling for age, education, and lesion volumes. In patients, mean FA and AD were decreased as compared to controls, which agrees with the notion of microstructural impairment of NAWM in glioma patients. Patients performed worse in all cognitive domains tested, and higher anisotropy and lower MD and RD values of NAWM were associated with better cognitive performance. In additional analyses, IDH-mutated and IDH-wildtype patients were compared. Patients with IDH-mutation showed higher FA, but lower MD, AD, and RD values as compared to IDH-wildtype patients, suggesting a better preserved microstructural integrity of NAWM, which may relate to a less infiltrative nature of IDH-mutated gliomas. Diffusion-based phenotyping and monitoring microstructural integrity of extratumoral whole-brain NAWM may aid in estimating occult white matter involvement and should be considered as a complementary biomarker in glioma.

13.
Cortex ; 89: 28-44, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192723

RESUMO

Aging leads to global changes in brain structure and cognitive performance, with reorganization of functional brain networks. Importantly, these age-related changes show higher inter-individual variability in older subjects. To particularly address this variability is a challenge for studies on lifetime trajectories from early to late adulthood. The present study therefore had a dedicated focus on late adulthood to characterize the functional connectivity in resting-state networks (RSFC) in relation to age and cognitive performance in 711 older adults (55-85 years) from the 1000BRAINS project. The executive, left and right frontoparietal resting-state (RS) networks showed age-related increases in RSFC. However, older adults did not show changes in RSFC in the default mode network (DMN). Furthermore, lower performance in working memory (WM) was associated with higher RSFC in the left frontoparietal RS network. The results suggest age-related compensatory increases in RSFC which might help to maintain cognitive performance. Nevertheless, the negative correlation between RSFC and WM performance hints at limited cognitive reserve capacity in lower performing older adults. Consequently, the current results provide evidence for a functional reorganization of the brain until late adulthood that might additionally explain parts of the variability of cognitive abilities in older adults.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Atenção/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Função Executiva/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Descanso/fisiologia
14.
Brain Struct Funct ; 222(1): 83-99, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26943919

RESUMO

Healthy aging is accompanied by changes in the functional architecture of the default mode network (DMN), e.g. a posterior to anterior shift (PASA) of activations. The putative structural correlate for this functional reorganization, however, is largely unknown. Changes in gyrification, i.e. decreases of cortical folding were found to be a marker of atrophy of the brain in later decades of life. Therefore, the present study assessed local gyrification indices of the DMN in relation to age and cognitive performance in 749 older adults aged 55-85 years. Age-related decreases in local gyrification indices were found in the anterior part of the DMN [particularly; medial prefrontal cortex (mPFC)] of the right hemisphere, and the medial posterior parts of the DMN [particularly; posterior cingulate cortex (PCC)/precuneus] of both hemispheres. Positive correlations between cognitive performance and local gyrification indices were found for (1) selective attention and left PCC/precuneus, (2) visual/visual-spatial working memory and bilateral PCC/precuneus and right angular gyrus (AG), and (3) semantic verbal fluency and right AG and right mPFC. The more pronounced age-related decrease in local gyrification indices of the posterior parts of the DMN supports the functionally motivated PASA theory by correlated structural changes. Surprisingly, the prominent age-related decrease in local gyrification indices in right hemispheric ROIs provides evidence for a structural underpinning of the right hemi-aging hypothesis. Noticeably, the performance-related changes in local gyrification largely involved the same parts of the DMN that were subject to age-related local gyrification decreases. Thus, the present study lends support for a combined structural and functional theory of aging, in that the functional changes in the DMN during aging are accompanied by comparably localized structural alterations.


Assuntos
Envelhecimento , Córtex Cerebral/anatomia & histologia , Cognição , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Cognição/fisiologia , Feminino , Giro do Cíngulo/anatomia & histologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Parietal/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia
15.
Cortex ; 72: 40-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25697048

RESUMO

Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral occipital cortex and parahippocampal gyrus.


Assuntos
Corpo Caloso/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Campos Visuais/fisiologia
16.
PLoS One ; 9(10): e110326, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25357176

RESUMO

BACKGROUND: Corticobasal Syndrome (CBS) is a rare neurodegenerative syndrome characterized by unilaterally beginning frontoparietal and basal ganglia atrophy. The study aimed to prove the hypothesis that there are differences in hemispheric susceptibility to disease-related changes. METHODS: Two groups of CBS patients with symptoms starting either on the left or right body side were investigated. Groups consisted of four patients each and were matched for sex, age and disease duration. Patient groups and a group of eight healthy age-matched controls were analyzed using deformation field morphometry and neuropsychological testing. To further characterize individual disease progression regarding brain atrophy and neuropsychological performance, two female, disease duration-matched patients differing in initially impaired body side were followed over six months. RESULTS: A distinct pattern of neural atrophy and neuropsychological performance was revealed for both CBS: Patients with initial right-sided impairment (r-CBS) revealed atrophy predominantly in frontoparietal areas and showed, except from apraxia, no other cognitive deficits. In contrast, patients with impairment of the left body side (l-CBS) revealed more widespread atrophy, extending from frontoparietal to orbitofrontal and temporal regions; and apraxia, perceptional and memory deficits could be found. A similar pattern of morphological and neuropsychological differences was found for the individual disease progression in l-CBS and r-CBS single cases. CONCLUSIONS: For similar durations of disease, volumetric grey matter loss related to CBS pathology appeared earlier and progressed faster in l-CBS than in r-CBS. Cognitive impairment in r-CBS was characterized by apraxia, and additional memory and perceptional deficits for l-CBS.


Assuntos
Doenças dos Gânglios da Base , Gânglios da Base , Substância Cinzenta , Doenças Neurodegenerativas , Idoso , Gânglios da Base/patologia , Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/patologia , Doenças dos Gânglios da Base/fisiopatologia , Estudos Transversais , Feminino , Seguimentos , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA