Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1385457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978787

RESUMO

Background: Ischemia with non-obstructive coronary arteries (INOCA) is a major clinical entity that involves potentially 20%-30% of patients with chest pain. INOCA is typically attributed either to coronary microvascular disease and/or vasospasm, but is likely distinct from classical coronary artery disease (CAD). Objectives: To gain insights into the etiology of INOCA and CAD, RNA sequencing of whole blood from patients undergoing both stress testing and elective invasive coronary angiography (ICA) was conducted. Methods: Stress testing and ICA of 177 patients identified 40 patients (23%) with INOCA compared to 39 controls (stress-, ICA-). ICA+ patients divided into 38 stress- and 60 stress+. RNAseq was performed by Illumina with ribosomal RNA depletion. Transcriptome changes were analyzed by DeSeq2 and curated by manual and automated methods. Results: Differentially expressed genes for INOCA were associated with elevated levels of transcripts related to mucosal-associated invariant T (MAIT) cells, plasmacytoid dendritic cells (pcDC), and memory B cells, and were associated with autoimmune diseases such as rheumatoid arthritis. Decreased transcripts were associated with neutrophils, but neutrophil transcripts, per se, were not less abundant in INOCA. CAD transcripts were more related to T cell functions. Conclusions: Elevated transcripts related to pcDC, MAIT, and memory B cells suggest an autoimmune component to INOCA. Reduced neutrophil transcripts are likely attributed to chronic activation leading to increased translation and degradation. Thus, INOCA could result from stimulation of B cell, pcDC, invariant T cell, and neutrophil activation that compromises cardiac microvascular function.

2.
J Intensive Care Med ; : 8850666241251743, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711289

RESUMO

Purpose: Secondary opportunistic coinfections are a significant contributor to morbidity and mortality in intensive care unit (ICU) patients, but can be difficult to identify. Presently, new blood RNA biomarkers were tested in ICU patients to diagnose viral, bacterial, and biofilm coinfections. Methods: COVID-19 ICU patients had whole blood drawn in RNA preservative and stored at -80°C. Controls and subclinical infections were also studied. Droplet digital polymerase chain reaction (ddPCR) quantified 6 RNA biomarkers of host neutrophil activation to bacterial (DEFA1), biofilm (alkaline phosphatase [ALPL], IL8RB/CXCR2), and viral infections (IFI27, RSAD2). Viral titer in blood was measured by ddPCR for SARS-CoV2 (SCV2). Results: RNA biomarkers were elevated in ICU patients relative to controls. DEFA1 and ALPL RNA were significantly higher in severe versus incidental/moderate cases. SOFA score was correlated with white blood cell count (0.42), platelet count (-0.41), creatinine (0.38), and lactate dehydrogenase (0.31). ALPL RNA (0.59) showed the best correlation with SOFA score. IFI27 (0.52) and RSAD2 (0.38) were positively correlated with SCV2 viral titer. Overall, 57.8% of COVID-19 patients had a positive RNA biomarker for bacterial or biofilm infection. Conclusions: RNA biomarkers of host neutrophil activation indicate the presence of bacterial and biofilm coinfections in most COVID-19 patients. Recognizing coinfections may help to guide the treatment of ICU patients.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37303712

RESUMO

Background: Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods: Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results: The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions: These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.

4.
Sci Rep ; 12(1): 17605, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266453

RESUMO

Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Humanos , Ratos , Materiais Biocompatíveis , Células Cultivadas , Infarto do Miocárdio/metabolismo , Neovascularização Fisiológica , Transplante de Células-Tronco , Células-Tronco/metabolismo
5.
Genes (Basel) ; 11(7)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674273

RESUMO

The genetic mechanisms underlying aortic stenosis (AS) and aortic insufficiency (AI) disease progression remain unclear. We hypothesized that normal aortic valves and those with AS or AI all exhibit unique transcriptional profiles. Normal control (NC) aortic valves were collected from non-matched donor hearts that were otherwise acceptable for transplantation (n = 5). Valves with AS or AI (n = 5, each) were collected from patients undergoing surgical aortic valve replacement. High-throughput sequencing of total RNA revealed 6438 differentially expressed genes (DEGs) for AS vs. NC, 4994 DEGs for AI vs. NC, and 2771 DEGs for AS vs. AI. Among 21 DEGs of interest, APCDD1L, CDH6, COL10A1, HBB, IBSP, KRT14, PLEKHS1, PRSS35, and TDO2 were upregulated in both AS and AI compared to NC, whereas ALDH1L1, EPHB1, GPX3, HIF3A, and KCNT1 were downregulated in both AS and AI (p < 0.05). COL11A1, H19, HIF1A, KCNJ6, PRND, and SPP1 were upregulated only in AS, and NPY was downregulated only in AS (p < 0.05). The functional network for AS clustered around ion regulation, immune regulation, and lipid homeostasis, and that for AI clustered around ERK1/2 regulation. Overall, we report transcriptional profiling data for normal human aortic valves from non-matched donor hearts that were acceptable for transplantation and demonstrated that valves with AS and AI possess unique genetic signatures. These data create a roadmap for the development of novel therapeutics to treat AS and AI.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/metabolismo , Redes Reguladoras de Genes/genética , Transcrição Gênica , Adulto , Idoso , Valva Aórtica/patologia , Valvopatia Aórtica/genética , Valvopatia Aórtica/patologia , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/patologia , Constrição Patológica/genética , Constrição Patológica/patologia , Feminino , Regulação da Expressão Gênica/genética , Transplante de Coração/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq
6.
Microb Biotechnol ; 13(6): 1780-1792, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32476224

RESUMO

The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E. coli lipopolysaccharide (LPS, n = 4), and a subset (8 SE, 8 saline) received a repeat injection 4 weeks later. At baseline, 4 h, 24 h, 48 h, 8 days and 4 weeks after injection, clinical assessments, blood cultures, blood counts, lymphocyte phenotypes, liver function tests, proinflammatory cytokines and immunoglobulins were assessed. Across all metrics, SE rats responded comparably to saline controls, displaying no clinically significant immune response. As expected, LPS rats exhibited severe immunological responses. Systemic SE administration does not induce sepsis or toxicity in rats, thereby supporting the safety of cyanobacteria-mammalian symbiotic therapeutics using this organism.


Assuntos
Escherichia coli , Synechococcus , Animais , Fotossíntese , Ratos , Ratos Wistar
7.
Tissue Eng Part A ; 26(5-6): 350-357, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32085692

RESUMO

Tissue engineering is an essential component of developing effective regenerative therapies. In this study, we introduce a promising method to create scaffold-free three-dimensional (3D) tissue engineered multilayered microstructures from cultured cells using the "3D tissue fabrication system" (Regenova®; Cyfuse, Tokyo, Japan). This technique utilizes the adhesive nature of cells. When cells are cultured in nonadhesive wells, they tend to aggregate and form a spheroidal structure. The advantage of this approach is that cellular components can be mixed into one spheroid, thereby promoting the formation of extracellular matrices, such as collagen and elastin. This system enables one to create a predesigned 3D structure composed of cultured cells. We found that the advantages of this system to be (1) the length, size, and shape of the structure that were designable and highly reproducible because of the computer controlled robotics system, (2) the graftable structure could be created within a reasonable period (8 days), and (3) the constructed tissue did not contain any foreign material, which may avoid the potential issues of contamination, biotoxicity, and allergy. The utilization of this robotic system enabled the creation of a 3D multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering. Impact statement The utilization of the "three dimensional tissue fabrication system" enabled the creation of a three-dimensional (3D) multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering.


Assuntos
Bioimpressão/métodos , Matriz Extracelular/química , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Cytokine ; 127: 154974, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978642

RESUMO

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Catéteres , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Ácido Hialurônico/administração & dosagem , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Ratos
9.
J Cell Mol Med ; 24(3): 2369-2383, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31886938

RESUMO

Aortic root aneurysm formation is a cardinal feature of Marfan syndrome (MFS) and likely TGF-ß driven via Smad (canonical) and ERK (non-canonical) signalling. The current study assesses human MFS vascular smooth muscle cell (SMC) phenotype, focusing on individual contributions by Smad and ERK, with Notch3 signalling identified as a novel compensatory mechanism against TGF-ß-driven pathology. Although significant ERK activation and mixed contractile gene expression patterns were observed by traditional analysis, this did not directly correlate with the anatomic site of the aneurysm. Smooth muscle cell phenotypic changes were TGF-ß-dependent and opposed by ERK in vitro, implicating the canonical Smad pathway. Bulk SMC RNA sequencing after ERK inhibition showed that ERK modulates cell proliferation, apoptosis, inflammation, and Notch signalling via Notch3 in MFS. Reversing Notch3 overexpression with siRNA demonstrated that Notch3 promotes several protective remodelling pathways, including increased SMC proliferation, decreased apoptosis and reduced matrix metalloproteinase activity, in vitro. In conclusion, in human MFS aortic SMCs: (a) ERK activation is enhanced but not specific to the site of aneurysm formation; (b) ERK opposes TGF-ß-dependent negative effects on SMC phenotype; (c) multiple distinct SMC subtypes contribute to a 'mixed' contractile-synthetic phenotype in MFS aortic aneurysm; and (d) ERK drives Notch3 overexpression, a potential pathway for tissue remodelling in response to aneurysm formation.


Assuntos
Aorta/metabolismo , Aneurisma Aórtico/metabolismo , Síndrome de Marfan/metabolismo , Contração Muscular/fisiologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Apoptose/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Fenótipo , Receptor Notch3/metabolismo
10.
Nat Biomed Eng ; 3(8): 611-620, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391596

RESUMO

Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer-nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions. In a rat model of severe pericardial adhesions, the hydrogel markedly reduced the severity of the adhesions, whereas commercial adhesion barriers (including Seprafilm and Interceed) did not. The hydrogels also reduced the severity of cardiac adhesions (relative to untreated animals) in a clinically relevant cardiopulmonary-bypass model in sheep. This viscoelastic supramolecular polymeric hydrogel represents a promising clinical solution for the prevention of post-operative pericardial adhesions.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Hidrogéis/química , Pericárdio/cirurgia , Polímeros/química , Aderências Teciduais , Animais , Celulose Oxidada , Ácido Hialurônico , Hidrogéis/uso terapêutico , Masculino , Modelos Animais , Nanopartículas , Polímeros/uso terapêutico , Ratos , Ovinos
11.
Circulation ; 138(19): 2130-2144, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474423

RESUMO

BACKGROUND: Cardiovascular bypass grafting is an essential treatment for complex cases of atherosclerotic disease. Because the availability of autologous arterial and venous conduits is patient-limited, self-assembled cell-only grafts have been developed to serve as functional conduits with off-the-shelf availability. The unacceptably long production time required to generate these conduits, however, currently limits their clinical utility. Here, we introduce a novel technique to significantly accelerate the production process of self-assembled engineered vascular conduits. METHODS: Human aortic smooth muscle cells and skin fibroblasts were used to construct bilevel cell sheets. Cell sheets were wrapped around a 22.5-gauge Angiocath needle to form tubular vessel constructs. A thin, flexible membrane of clinically approved biodegradable tissue glue (Dermabond Advanced) served as a temporary, external scaffold, allowing immediate perfusion and endothelialization of the vessel construct in a bioreactor. Subsequently, the matured vascular conduits were used as femoral artery interposition grafts in rats (n=20). Burst pressure, vasoreactivity, flow dynamics, perfusion, graft patency, and histological structure were assessed. RESULTS: Compared with engineered vascular conduits formed without external stabilization, glue membrane-stabilized conduits reached maturity in the bioreactor in one-fifth the time. After only 2 weeks of perfusion, the matured conduits exhibited flow dynamics similar to that of control arteries, as well as physiological responses to vasoconstricting and vasodilating drugs. The matured conduits had burst pressures exceeding 500 mm Hg and had sufficient mechanical stability for surgical anastomoses. The patency rate of implanted conduits at 8 weeks was 100%, with flow rate and hind-limb perfusion similar to those of sham controls. Grafts explanted after 8 weeks showed a histological structure resembling that of typical arteries, including intima, media, adventitia, and internal and external elastic membrane layers. CONCLUSIONS: Our technique reduces the production time of self-assembled, cell sheet-derived engineered vascular conduits to 2 weeks, thereby permitting their use as bypass grafts within the clinical time window for elective cardiovascular surgery. Furthermore, our method uses only clinically approved materials and can be adapted to various cell sources, simplifying the path toward future clinical translation.


Assuntos
Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artéria Femoral/cirurgia , Músculo Liso Vascular/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Aorta/citologia , Velocidade do Fluxo Sanguíneo , Implante de Prótese Vascular/efeitos adversos , Células Cultivadas , Técnicas de Cocultura , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Fibroblastos , Humanos , Masculino , Miócitos de Músculo Liso , Desenho de Prótese , Falha de Prótese , Ratos Nus , Fluxo Sanguíneo Regional , Estresse Mecânico , Resistência à Tração , Fatores de Tempo , Grau de Desobstrução Vascular
12.
Cardiovasc Diabetol ; 16(1): 142, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096622

RESUMO

BACKGROUND: Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS: Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS: SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS: Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Células Progenitoras Endoteliais/transplante , Microvasos , Miócitos de Músculo Liso/transplante , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/fisiopatologia , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Microvasos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Roedores
13.
Sci Adv ; 3(6): e1603078, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630913

RESUMO

Coronary artery disease is one of the most common causes of death and disability, afflicting more than 15 million Americans. Although pharmacological advances and revascularization techniques have decreased mortality, many survivors will eventually succumb to heart failure secondary to the residual microvascular perfusion deficit that remains after revascularization. We present a novel system that rescues the myocardium from acute ischemia, using photosynthesis through intramyocardial delivery of the cyanobacterium Synechococcus elongatus. By using light rather than blood flow as a source of energy, photosynthetic therapy increases tissue oxygenation, maintains myocardial metabolism, and yields durable improvements in cardiac function during and after induction of ischemia. By circumventing blood flow entirely to provide tissue with oxygen and nutrients, this system has the potential to create a paradigm shift in the way ischemic heart disease is treated.


Assuntos
Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Processos Fototróficos , Animais , Terapia Biológica , Cianobactérias , Metabolismo Energético , Testes de Função Cardíaca , Hipóxia/metabolismo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Fotossíntese , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA