Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 13: 950997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003293

RESUMO

This meta-analysis investigated the association between age-related hearing loss and structural neuroanatomy, specifically changes to gray matter volume. Hearing loss is associated with increased risk of cognitive decline. Hence, understanding the effects of hearing loss in older age on brain health is essential. We reviewed studies which compared older participants with hearing loss (age-related hearing loss: ARHL) to older adults without clinical hearing loss (no-ARHL), on neuroanatomical outcomes, specifically gray matter (GM) volume as measured by magnetic resonance imaging. A total of five studies met the inclusion criteria, three of which were included in an analysis of whole-brain gray matter volume (ARHL group n = 113; no-ARHL group n = 138), and three were included in analyses of lobe-wise gray matter volume (ARHL group n = 139; no-ARHL group n = 162). Effect-size seed-based d mapping software was employed for whole-brain and lobe-wise analysis of gray matter volume. The analysis indicated there was no significant difference between adults with ARHL compared to those with no-ARHL in whole-brain gray matter volume. Due to lacking stereotactic coordinates, the level of gray matter in specific neuroanatomical locations could only be observed at lobe-level. These data indicate that adults with ARHL show increased gray matter atrophy in the temporal lobe only (not in occipital, parietal, or frontal), compared to adults with no-ARHL. The implications for theoretical frameworks of the hearing loss and cognitive decline relationship are discussed in relation to the results. This meta-analysis was pre-registered on PROSPERO (CRD42021265375). Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=265375, PROSPERO CRD42021265375.

2.
Mol Immunol ; 52(3-4): 174-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22677715

RESUMO

Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) sera. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions.


Assuntos
Bovinos/sangue , Cavalos/sangue , Coelhos/sangue , Albumina Sérica/química , Albumina Sérica/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cristalização , Hipersensibilidade/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA