RESUMO
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacosRESUMO
BACKGROUND: To assess the results of ureterorenoscopy (URS) for upper tract urolithiasis in a contemporary Australian tertiary healthcare setting. METHODS: Hospital records of all URS stone procedures performed between January 2017 and December 2018 in a metropolitan service were retrospectively reviewed. Outcome measures including stone free rates, adherence to postoperative follow-up and complications rates were recorded. RESULTS: 385 patients (387 renal units) with mean age 53.8 (range 18-89) underwent URS for stones measuring between 2 and 27 mm (median 8 mm). 465 URS were performed with 1029 total procedures performed. 48.6% of operations were performed as day cases. Complications were recorded in 9% of the 465 URS cases with 42.9% of these Clavien II or more. The representation rate to our Emergency Departments was 15.4%. Only 49.1% (201) of patients had a follow-up review with imaging to assess stone free rates. Of the 201 patients who underwent imaging, only 38.3% were stone free. Stone analysis was performed in 34.5%. CONCLUSION: Less than half of all patients were reviewed despite undergoing expensive, time consuming surgery for a condition with a high recurrence rate. In agreement with recent publications stone-free rates were low, with significant complications and representation rates. Stone surgery should be given the attention and resources equivalent to cancer surgery to improve results. LEVEL OF EVIDENCE: 2b.
Assuntos
Cálculos Renais , Humanos , Pessoa de Meia-Idade , Cálculos Renais/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Austrália/epidemiologia , Ureteroscopia/métodosRESUMO
As reviewers, editors, and researchers with lived experience of mental health challenges, addiction, and/or psychosocial distress/disability, the authors have struggled to find an adequate way to address inappropriate or misleading use of the term "participatory methods" to describe research that involves people with lived experience in only a superficial or tokenistic manner. The authors of this article have found that, in their experience, editors or other reviewers often appear to give authors extensive leeway on claims of participatory methods that more accurately reflect tokenism or superficial involvement. The problem of co-optation is described, examples from the authors' experiences are given, the potential harms arising from co-optation are articulated, and a series of concrete actions that journal editors, reviewers, and authors can take to preserve the core intent of participatory approaches are offered. The authors conclude with a call to action: the mental health field must ensure that power imbalances that sustain epistemic injustice against people with lived experience are not worsened by poorly conducted or reported studies or by tokenistic participatory methods.
Assuntos
Serviços de Saúde Mental , Saúde Mental , Humanos , EmpoderamentoRESUMO
The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N -HDAC1-MBD3GATAD2CC , and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C -MTA1BAH , MTA1BAH -MBD3MBD , and HDAC160-100 -MBD3MBD . Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR , thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.
Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Teorema de Bayes , Montagem e Desmontagem da Cromatina , Histona Desacetilases/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismoRESUMO
A subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared. Wild type mice transplanted with HSCs from mice containing a reporter gene, but not the diphtheria toxin gene, regulated by the adiponectin gene promoter served as controls. In mice in which HSCDA production was suppressed, adipocyte size declined while adipose depot weights were unchanged and the number of conventional adipocyte progenitors significantly increased. We also measured a paradoxical increase in circulating leptin levels while physical activity was significantly decreased in the HSCDA depleted mice. Finally, insulin sensitivity was significantly reduced in HSCDA depleted mice. In contrast, loss of HSCDA production had no effect on body weight, components of energy balance, or levels of several circulating adipokines and tissue-resident inflammatory cells. These data indicate that ablation of this low-abundance subpopulation of adipocytes is associated with changes in circulating leptin levels and leptin-regulated endpoints associated with adipose tissue function. How they do so remains a mystery, but our results highlight the need for additional studies to explore the role of HSCDAs in other physiologic contexts such as obesity, metabolic dysfunction or loss of sex hormone production.
Assuntos
Insulina , Leptina , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Toxina Diftérica , Feminino , Células-Tronco Hematopoéticas , Insulina/metabolismo , Leptina/metabolismo , CamundongosRESUMO
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
RESUMO
Breaking up sedentary behavior with short-frequent bouts of physical activity (PA) differentially influences metabolic health compared with the performance of a single-continuous bout of PA matched for total active time. However, the underlying mechanisms are unknown. We compared skeletal muscle mitochondrial respiration (high-resolution respirometry) and molecular adaptations (RNA sequencing) following 4-day exposure to breaks vs. energy-matched single-continuous PA bout in inactive adults with overweight/obesity. Participants (9M/10F, 32.2 ± 6.4 years, 30.3 ± 3.0 kg/m2) completed three 4-day interventions of a randomized cross-over study: SED, sedentary control; MICRO, 5 min brisk walking each hour for 9 h; ONE: 45 min/d continuous brisk walking bout. Fasted muscle biopsies were collected on day 5. Mitochondrial coupling in the presence of lipid-associated substrates was higher after ONE (4.8 ± 2.5) compared to MICRO (3.1 ± 1.1, p = 0.02) and SED (2.3 ± 1.0, p = 0.001). Respiratory rates did not differ across groups with carbohydrate-associated substrates. In pathways associated with muscle contraction transcription signaling, ONE and MICRO similarly enhanced Oxidative Phosphorylation and Sirtuin Signaling expression (p < 0.0001, for both). However, ONE (p < 0.001, for all), but not MICRO, had greater pathway enrichment, including Ca++, mTOR, AMPK, and HIF1α signaling, than SED. Although breaking up sedentary behavior triggered skeletal muscle molecular adaptations favoring oxidative capacity, it did not improve mitochondrial function over the short term.
Assuntos
Sobrepeso , Comportamento Sedentário , Adulto , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Estresse OxidativoRESUMO
Progression of autosomal dominant polycystic kidney disease (ADPKD) is modified by metabolic defects and obesity. Indeed, reduced food intake slows cyst growth in preclinical rodent studies. Here, we demonstrate the feasibility of daily caloric restriction (DCR) and intermittent fasting (IMF) in a cohort of overweight or obese patients with ADPKD. Clinically significant weight loss occurred with both DCR and IMF; however, weight loss was greater and adherence and tolerability were better with DCR. Further, slowed kidney growth correlated with body weight and visceral adiposity loss independent of dietary regimen. Similarly, we compared the therapeutic efficacy of DCR, IMF, and time restricted feeding (TRF) using an orthologous ADPKD mouse model. Only ADPKD animals on DCR lost significant weight and showed slowed cyst growth compared to ad libitum, IMF, or TRF feeding. Collectively, this supports therapeutic feasibility of caloric restriction in ADPKD, with potential efficacy benefits driven by weight loss.
RESUMO
This study explored the patient characteristics and outcomes in relation to guardianship in a large-scale sub-acute Australian hospital. Fifteen patients who appointed a guardian at The Kingston Center, Monash Health, participated through exploratory data collection and analysis utilizing a de-identifiable template. The findings revealed both diverse and complex patient characteristics, and ethical dilemmas in patient outcomes for social workers. Patient outcomes post-guardianship appointment and discharge highlighted a negative impact from long length of stay and the iatrogenic impact on patient wellbeing in hospital. The study reflected a disparity between patients' discharge goals and their outcomes indicating significant ethical dilemmas and complexities for social workers in ensuring rights to autonomy and responsibility for safety are balanced.
Assuntos
Tutores Legais , Serviço Social , Idoso , Austrália , Hospitais , Humanos , Alta do PacienteRESUMO
Moderate weight loss improves numerous risk factors for cardiometabolic disease; however, long-term weight loss maintenance (WLM) is often thwarted by metabolic adaptations that suppress energy expenditure and facilitate weight regain. Skeletal muscle has a prominent role in energy homeostasis; therefore, we investigated the effect of WLM and weight regain on skeletal muscle in rodents. In skeletal muscle of obesity-prone rats, WLM reduced fat oxidative capacity and downregulated genes involved in fat metabolism. Interestingly, even after weight was regained, genes involved in fat metabolism were also reduced. We then subjected mice with skeletal muscle lipoprotein lipase overexpression (mCK-hLPL), which augments fat metabolism, to WLM and weight regain and found that mCK-hLPL attenuates weight regain by potentiating energy expenditure. Irrespective of genotype, weight regain suppressed dietary fat oxidation and downregulated genes involved in fat metabolism in skeletal muscle. However, mCK-hLPL mice oxidized more fat throughout weight regain and had greater expression of genes involved in fat metabolism and lower expression of genes involved in carbohydrate metabolism during WLM and regain. In summary, these results suggest that skeletal muscle fat oxidation is reduced during WLM and regain, and therapies that improve skeletal muscle fat metabolism may attenuate rapid weight regain.
Assuntos
Lipase Lipoproteica/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Lipase Lipoproteica/genética , Masculino , Camundongos , Ratos , Ratos Wistar , Análise de Sequência de RNA , Redução de Peso/fisiologiaRESUMO
The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition.
Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Humanos , Modelos MolecularesRESUMO
Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.
Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Ingestão de Energia/fisiologia , Feminino , Masculino , RatosRESUMO
Exercise is a potent facilitator of long-term weight loss maintenance (WLM), whereby it decreases appetite and increases energy expenditure beyond the cost of the exercise bout. We have previously shown that exercise may amplify energy expenditure through energetically expensive nutrient deposition. Therefore, we investigated the effect of exercise on hepatic de novo lipogenesis (DNL) during WLM and relapse to obesity. Obese rats were calorically restricted with (EX) or without (SED) treadmill exercise (1 h/day, 6 days/wk, 15 m/min) to induce and maintain weight loss. After 6 wk of WLM, subsets of WLM-SED and WLM-EX rats were allowed ad libitum access to food for 1 day to promote relapse (REL). An energy gap-matched group of sedentary, relapsing rats (REL-GM) were provided a diet matched to the positive energy imbalance of the REL-EX rats. During relapse, exercise increased enrichment of hepatic DN-derived lipids and induced hepatic molecular adaptations favoring DNL compared with the gap-matched controls. In the liver, compared with both REL-SED and REL-GM rats, REL-EX rats had lower hepatic expression of genes required for cholesterol biosynthesis; greater hepatic expression of genes that mediate very low-density lipoprotein synthesis and secretion; and greater mRNA expression of Cyp27a1, which encodes an enzyme involved in the biosynthesis of bile acids. Altogether, these data provide compelling evidence that the liver has an active role in exercise-mediated potentiation of energy expenditure during early relapse.
Assuntos
Colesterol/biossíntese , Metabolismo Energético , Lipogênese , Fígado/metabolismo , Obesidade/terapia , Condicionamento Físico Animal , Aumento de Peso , Redução de Peso , Animais , Ácidos e Sais Biliares/biossíntese , Restrição Calórica , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação Enzimológica da Expressão Gênica , Insulina/sangue , Lipogênese/genética , Masculino , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Recidiva , Corrida , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The purpose of this study was to determine whether obesity and/or exercise training alters weight regain and musculoskeletal health after ovariectomy (OVX). Female rats were fed high-fat diet (HFD) to reveal obesity-prone (OP) and obesity-resistant (OR) phenotypes. The OP and OR exercising (EX) and sedentary (SED) rats were calorically restricted to lose 15% of body weight using medium-fat diet. Rats were then maintained in energy balance for 8 wk before OVX. After OVX and a brief calorically limited phase, rats were allowed to eat ad libitum until body weight plateaued. Starting at weight loss, EX ran 1 h·d, 6 d·wk, 15 m·min. Energy intake, spontaneous physical activity (SPA), and total energy expenditure were evaluated at the end of weight maintenance pre-OVX, and at three time points post-OVX: before weight regain, during early regain, and after regain. Data are presented as mean ± SE. Exercise attenuated weight regain after OVX in OP only (OP-EX, 123 ± 10 g; OP-SED, 165 ± 12 g; OR-EX, 121 ± 6 g; OR-SED, 116 ± 6 g), which was primarily an attenuation of fat gain. The early post-OVX increase in energy intake explained much of the weight regain, and was similar across groups. Exercising improved bone strength, as did maintaining SPA. Group differences in muscle mitochondrial respiration were not significant. The large decrease in SPA due to OVX was persistent, but early weight regain was dependent on decreased SPA. In conclusion, leanness and exercise do not necessarily protect from OVX-induced weight gain. Exercise prevented weight gain in obese rats, but loss of SPA was the greatest contributor to post-OVX weight gain. Thus, understanding the mechanisms resulting in reduction in SPA after ovarian hormone loss is critical in the prevention of menopause-associated metabolic dysfunction.
Assuntos
Densidade Óssea/fisiologia , Menopausa/fisiologia , Mitocôndrias Musculares/fisiologia , Obesidade/fisiopatologia , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia , Aumento de Peso/fisiologia , Animais , Composição Corporal/fisiologia , Metabolismo Energético , Feminino , Modelos Animais , Músculo Esquelético/fisiologia , Ovariectomia , Ratos WistarRESUMO
Prevalence of obesity is exacerbated by low rates of successful long-term weight loss maintenance (WLM). In part, relapse from WLM to obesity is due to a reduction in energy expenditure (EE) that persists throughout WLM and relapse. Thus, interventions that increase EE might facilitate WLM. In obese mice that were calorically restricted to reduce body weight by ~20%, we manipulated EE throughout WLM and early relapse using intermittent cold exposure (ICE; 4°C, 90 min/day, 5 days/wk, within the last 3 h of the light cycle). EE, energy intake, and spontaneous physical activity were measured during the obese, WLM, and relapse phases. During WLM and relapse, the ICE group expended more energy during the light cycle because of cold exposure but expended less energy in the dark cycle, which led to no overall difference in total daily EE. The compensation in EE appeared to be mediated by activity, whereby the ICE group was more active during the light cycle because of cold exposure but less active during the dark cycle, which led to no overall effect on total daily activity during WLM and relapse. In brown adipose tissue of relapsing mice, the ICE group had greater mRNA expression of Dio2 and protein expression of UCP1 but lower mRNA expression of Prdm16. In summary, these findings indicate that despite robust increases in EE during cold exposures, ICE is unable to alter total daily EE during WLM or early relapse, likely due to compensatory behaviors in activity.
Assuntos
Manutenção do Peso Corporal/fisiologia , Temperatura Baixa , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Termogênese/fisiologia , Aumento de Peso/fisiologia , Redução de Peso/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Obesidade , Fotoperíodo , RNA Mensageiro/metabolismo , Recidiva , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Iodotironina Desiodinase Tipo IIRESUMO
BACKGROUND/OBJECTIVES: The current obesity epidemic has spurred exploration of the developmental origin of adult heath and disease. A mother's dietary choices and health can affect both the early wellbeing and lifelong disease-risk of the offspring. SUBJECTS/METHODS: To determine if changes in the mother's diet and adiposity have long-term effects on the baby's metabolism, independently from a prenatal insult, we utilized a mouse model of diet-induced-obesity and cross-fostering. All pups were born to lean dams fed a low fat diet but were fostered onto lean or obese dams fed a high fat diet. This study design allowed us to discern the effects of a poor diet from those of mother's adiposity and metabolism. The weaned offspring were placed on a high fat diet to test their metabolic function. RESULTS: In this feeding challenge, all male (but not female) offspring developed metabolic dysfunction. We saw increased weight gain in the pups nursed on an obesity-resistant dam fed a high fat diet, and increased pathogenesis including liver steatosis and adipose tissue inflammation, when compared to pups nursed on either obesity-prone dams on a high fat diet or lean dams on a low fat diet. CONCLUSION: Exposure to maternal over-nutrition, through the milk, is sufficient to shape offspring health outcomes in a sex- and organ-specific manner, and milk from a mother who is obesity-prone may partially protect the offspring from the insult of a poor diet.
Assuntos
Aleitamento Materno , Dieta , Gorduras na Dieta/administração & dosagem , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/prevenção & controle , Obesidade , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Comportamento Alimentar , Feminino , Masculino , Doenças Metabólicas/etiologia , Camundongos Endogâmicos C57BL , Leite , Mães , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fatores Sexuais , Aumento de PesoRESUMO
BACKGROUND: Accumulation of diacylglycerol (DAG) and sphingolipids is thought to promote skeletal muscle insulin resistance by altering cellular signaling specific to their location. However,the subcellular localization of bioactive lipids in human skeletal muscle is largely unknown. METHODS: We evaluated subcellular localization of skeletal muscle DAGs and sphingolipids in lean individuals (n = 15), endurance-trained athletes (n = 16), and obese men and women with (n = 12) and without type 2 diabetes (n = 15). Muscle biopsies were fractionated into sarcolemmal, cytosolic, mitochondrial/ER, and nuclear compartments. Lipids were measured using liquid chromatography tandem mass spectrometry, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamp. RESULTS: Sarcolemmal 1,2-DAGs were not significantly related to insulin sensitivity. Sarcolemmal ceramides were inversely related to insulin sensitivity, with a significant relationship found for the C18:0 species. Sarcolemmal sphingomyelins were also inversely related to insulin sensitivity, with the strongest relationships found for the C18:1, C18:0, and C18:2 species. In the mitochondrial/ER and nuclear fractions, 1,2-DAGs were positively related to, while ceramides were inversely related to, insulin sensitivity. Cytosolic lipids as well as 1,3-DAG, dihydroceramides, and glucosylceramides in any compartment were not related to insulin sensitivity. All sphingolipids but only specific DAGs administered to isolated mitochondria decreased mitochondrial state 3 respiration. CONCLUSION: These data reveal previously unknown differences in subcellular localization of skeletal muscle DAGs and sphingolipids that relate to whole-body insulin sensitivity and mitochondrial function in humans. These data suggest that whole-cell concentrations of lipids obscure meaningful differences in compartmentalization and suggest that subcellular localization of lipids should be considered when developing therapeutic interventions to treat insulin resistance. FUNDING: National Institutes of Health General Clinical Research Center (RR-00036), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01DK089170), NIDDK (T32 DK07658), and Colorado Nutrition Obesity Research Center (P30DK048520).
Assuntos
Diglicerídeos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Esfingolipídeos/metabolismo , Adulto , Biópsia , Glicemia/análise , Estudos Transversais , Citosol/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diglicerídeos/análise , Retículo Endoplasmático/metabolismo , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/metabolismo , Sarcolema/metabolismo , Esfingolipídeos/análiseRESUMO
Adipose tissue expansion progresses rapidly during postnatal life, influenced by both prenatal maternal factors and postnatal developmental cues. The ratio of omega-6 (n-6) relative to n-3 polyunsaturated fatty acids (PUFAs) is believed to regulate perinatal adipogenesis, but the cellular mechanisms and long-term effects are not well understood. We lowered the fetal and postnatal n-6/n-3 PUFA ratio exposure in wild-type offspring under standard maternal dietary fat amounts to test the effects of low n-6/n-3 ratios on offspring adipogenesis and adipogenic potential. Relative to wild-type pups receiving high perinatal n-6/n-3 ratios, subcutaneous adipose tissue in 14-day-old wild-type pups receiving low n-6/n-3 ratios had more adipocytes that were smaller in size; decreased Pparγ2, Fabp4, and Plin1; several lipid metabolism mRNAs; coincident hypermethylation of the PPARγ2 proximal promoter; and elevated circulating adiponectin. As adults, offspring that received low perinatal n-6/n-3 ratios were diet-induced obesity (DIO) resistant and had a lower positive energy balance and energy intake, greater lipid fuel preference and non-resting energy expenditure, one-half the body fat, and better glucose clearance. Together, the findings support a model in which low early-life n-6/n-3 ratios remodel adipose morphology to increase circulating adiponectin, resulting in a persistent adult phenotype with improved metabolic flexibility that prevents DIO.
Assuntos
Adipogenia , Glicemia/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Metabolismo dos Lipídeos , Obesidade/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adipócitos/citologia , Adiponectina/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Tamanho Celular , Metilação de DNA , Dieta Hiperlipídica , Gorduras na Dieta , Ingestão de Energia , Metabolismo Energético , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Camundongos , Obesidade/sangue , PPAR gama/metabolismo , Perilipina-1/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fatores de RiscoRESUMO
Both the history of obesity and weight loss may change how menopause affects metabolic health. The purpose was to determine whether obesity and/or weight loss status alters energy balance (EB) and subsequent weight gain after the loss of ovarian function. Female lean and obese Wistar rats were randomized to 15% weight loss (WL) or ad libitum fed controls (CON). After the weight loss period, WL rats were kept in EB at the reduced weight for 8 weeks prior to ovariectomy (OVX). After OVX, all rats were allowed to eat ad libitum until weight plateaued. Energy intake (EI), spontaneous physical activity, and total energy expenditure (TEE) were measured with indirect calorimetry before OVX, immediately after OVX, and after weight plateau. Changes in energy intake (EI), TEE, and weight gain immediately after OVX were similar between lean and obese rats. However, obese rats gained more total weight and fat mass than lean rats over the full regain period. Post-OVX, EI increased more (P ≤ 0.03) in WL rats (58.9 ± 3.5 kcal/d) than CON rats (8.5 ± 5.2 kcal/d), and EI partially normalized (change from preOVX: 20.5 ± 4.2 vs. 1.5 ± 4.9 kcal/day) by the end of the study. As a result, WL rats gained weight (week 1:44 ± 20 vs. 7 ± 25 g) more rapidly (mean = 44 ± 20 vs. 7 ± 25 g/week; P < 0.001) than CON Prior obesity did not affect changes in EB or weight regain following OVX, whereas a history of weight loss prior to OVX augmented disruptions in EB after OVX, resulting in more rapid weight regain.