Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630833

RESUMO

Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.


Assuntos
Galinhas , Escherichia coli , Animais , Bifidobacterium , Biomarcadores , Inflamação/tratamento farmacológico
2.
Nutrients ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375657

RESUMO

Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Galinhas/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Mucosa Intestinal/metabolismo
3.
Nutrients ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500984

RESUMO

Approximately $20 billion of apple sales are generated annually in the United States. With an estimated 5 million tons produced yearly in the U.S. within the last decade, apple consumption is considered ubiquitous. Apples are comprised of bioactive constituents such as phytochemicals and prebiotics that may potentiate intestinal health and the gut microbiome. This study aimed to evaluate the effects of Empire apple juice, pomace, and pulp soluble extracts on intestinal functionality, morphology, and the microbiome in vivo (Gallus gallus). There were five treatment groups: non-injected (NI); 18 MΩ H2O (H2O); 6% apple juice (AJ); 6% apple pomace (APo); 6% apple pulp (APu). The eggs were treated by intra-amniotic administration of the samples on day 17 of incubation. After hatching, the blood, tissue, and cecum samples were collected for further analyses­including duodenal histomorphology, hepatic and duodenal mRNA expression, and cecal bacterial populations. Crypt depth was significantly (p < 0.5) shortest in AJ when compared to APo and APu. APo and APu soluble extracts significantly improved villi surface area compared to NI and H2O control groups. The highest count of Paneth cells per crypt was observed in APo as compared to all groups. In addition, the expression of brush border membrane micronutrient metabolism and functional proteins varied between treatments. Lastly, Lactobacillus cecal microbial populations increased significantly in the AJ group, while AJ, APu, and APu increased the abundance of Clostridium (p < 0.5). Ultimately, these results indicate the potential of Empire apple pomace to improve host intestinal health and the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Malus , Animais , Galinhas , Prebióticos , Bactérias/metabolismo
4.
Nutrients ; 14(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432481

RESUMO

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.


Assuntos
Enterocolite Necrosante , Doenças Fetais , Doenças do Recém-Nascido , Recém-Nascido , Humanos , Feminino , Animais , Suínos , Enterocolite Necrosante/microbiologia , Galinhas , Disbiose , Escherichia coli , Bactérias
5.
Nutrients ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36079797

RESUMO

This is a preliminary study evaluating the effect of different fractions of Concord grapes (Vitis labrusca L.) on the brush border membrane (BBM) morphology, duodenal gene expression, and specific gut bacterial populations. For this study, we utilized a unique intraamniotic approach, wherein, the test substances are administered into the amnion of the Gallus gallus egg (on day 17). The embryo orally consumes the amniotic fluid along with the injected test substance before the hatch. We randomly divided ~50 fertilized eggs into 5 groups including 6% grape (juice, puree, and pomace) along with controls (no injection and diluent­H2O). The grape juice was prepared by crushing the grapes; the grape residues were used as pomace. The grape puree included the grape skin, endocarp, mesocarp, and juice but not the seeds. On day 21, the hatch day, the blood, pectoral muscle, liver, duodenum, and large intestine were harvested. Our results showed no significant differences in blood glucose, pectoral glycogen level, or body weight. However, significant (p < 0.05) differences in duodenal and liver gene expression were observed between the treatment groups. The grape puree treatment resulted in higher Clostridium numbers and lower Bifidobacterium numbers when compared to all other groups. In summary, the dietary consumption of grape polyphenols has the potential to beneficially modulate aspects of intestinal health provided their concentration is limited.


Assuntos
Vitis , Animais , Bactérias , Bifidobacterium , Galinhas , Polifenóis , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA