Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(12): e9750, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38616287

RESUMO

RATIONALE: Charge transfer dissociation (CTD) is a novel fragmentation technique that demonstrates enhanced structural characterization for a wide variety of molecules compared to standard fragmentation techniques like collision-induced dissociation (CID). Alternative fragmentation techniques, such as electron transfer dissociation, electron capture dissociation, and ultraviolet photodissociation, also overcome many of the shortfalls of CID, but none of them are a silver bullet that can adequately characterize a wide variety of structures and charge states of target compounds. Given the diversity of structural classes and their occasional obstinance towards certain activation techniques, alternative fragmentation techniques are required that rely on novel or alternative modes of activation. METHODS: Herein, we present a step-by-step protocol for the installation of CTD on a quadrupole ion trap mass spectrometer and best practices for optimizing the signal-to-noise ratio and acquisition times for CTD mass spectra. RESULTS: In addition to two CTD installations in the Jackson laboratory, CTD has also been installed, and is currently in operation, on two 3D ion trap mass spectrometers in France: one in the laboratory of Dr. David Ropartz and Dr. Hélène Rogneaux at INRAE in Nantes, and the other in the laboratory of Dr. Jean-Yves Salpin at Université d'Évry Val-d'Essonne, part of the Paris-Saclay University system. CONCLUSIONS: Here, we provide a visual protocol to help others accomplish the instrument modification.

2.
J Am Soc Mass Spectrom ; 34(7): 1210-1224, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276607

RESUMO

Mass spectrometry has made profound contributions to the criminal justice system by providing an instrumental method of analysis that delivers exquisite analytical figures of merit for a wide variety of samples and analytes. Applications include the characterization of trace metal impurities in hair and glass to the identification of drugs, explosives, polymers, and ignitable liquids. This review describes major historical developments and, where possible, relates the developed capabilities to casework and legal precedents. This review also provides insight into how historical applications have evolved into, and out of, modern consensus standards. Unlike many pattern-based techniques and physical-matching methods, mass spectrometry has strong scientific foundations and a long history of successful applications that have made it one of the most reliable and respected sources of scientific evidence in criminal and civil cases. That said, in several appellate decisions in which mass spectrometric evidence was challenged but admitted, decisions sometimes still went against the mass spectrometric data anyway, which goes to show that mass spectrometric evidence is always just one piece of the larger legal puzzle.


Assuntos
Espectrometria de Massas , Humanos , Animais , Espectrometria de Massas/métodos , Medicina Legal/legislação & jurisprudência , Medicina Legal/métodos , Cannabis/química , Radioisótopos
3.
J Am Soc Mass Spectrom ; 34(7): 1235-1247, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254938

RESUMO

This is the second of two manuscripts describing how general linear modeling (GLM) of a selection of the most abundant normalized fragment ion abundances of replicate mass spectra from one laboratory can be used in conjunction with binary classifiers to enable specific and selective identifications with reportable error rates of spectra from other laboratories. Here, the proof-of-concept uses a training set of 128 replicate cocaine spectra from one crime laboratory as the basis of GLM modeling. GLM models for the 20 most abundant fragments of cocaine were then applied to 175 additional test/validation cocaine spectra collected in more than a dozen crime laboratories and 716 known negative spectra, which included 10 spectra of three diastereomers of cocaine. Spectral similarity and dissimilarity between the measured and predicted abundances were assessed using a variety of conventional measures, including the mean absolute residual and NIST's spectral similarity score. For each spectral measure, GLM predictions were compared to the traditional exemplar approach, which used the average of the cocaine training set as the consensus spectrum for comparisons. In unsupervised models, EASI provided better than a 95% true positive rate for cocaine with a 0% false positive rate. A supervised binary logistic regression model provided 100% accuracy and no errors using EASI-predicted abundances of only four peaks at m/z 152, 198, 272, and 303. Regardless of the measure of spectral similarity, error rates for identifications using EASI were superior to the traditional exemplar/consensus approach. As a supervised binary classifier, EASI was more reliable than using Mahalanobis distances.

4.
J Am Soc Mass Spectrom ; 34(7): 1248-1262, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37255332

RESUMO

This study aims to resolve one of the longest-standing problems in mass spectrometry, which is how to accurately identify an organic substance from its mass spectrum when a spectrum of the suspected substance has not been analyzed contemporaneously on the same instrument. Part one of this two-part report describes how Rice-Ramsperger-Kassel-Marcus (RRKM) theory predicts that many branching ratios in replicate electron-ionization mass spectra will provide approximately linear correlations when analysis conditions change within or between instruments. Here, proof-of-concept general linear modeling is based on the 20 most abundant fragments in a database of 128 training spectra of cocaine collected over 6 months in an operational crime laboratory. The statistical validity of the approach is confirmed through both analysis of variance (ANOVA) of the regression models and assessment of the distributions of the residuals of the models. General linear modeling models typically explain more than 90% of the variance in normalized abundances. When the linear models from the training set are applied to 175 additional known positive cocaine spectra from more than 20 different laboratories, the linear models enabled ion abundances to be predicted with an accuracy of <2% relative to the base peak, even though the measured abundances vary by more than 30%. The same models were also applied to 716 known negative spectra, including the diastereomers of cocaine: allococaine, pseudococaine, and pseudoallococaine, and the residual errors were larger for the known negatives than for known positives. The second part of the manuscript describes how general linear regression modeling can serve as the basis for binary classification and reliable identification of cocaine from its diastereomers and all other known negatives.

5.
Glycobiology ; 32(6): 483-495, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35275172

RESUMO

The combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions. Results demonstrate that He-CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He-CTD produces informative fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He-CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving most of the labile Neu5Ac and fucose groups.


Assuntos
Hélio , Leite Humano , Cromatografia Líquida , Hélio/análise , Hélio/química , Humanos , Espectrometria de Massas/métodos , Leite Humano/química , Oligossacarídeos/química
6.
Analyst ; 147(6): 1159-1168, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35188507

RESUMO

The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.


Assuntos
Ácido Aspártico , Espectrometria de Massas em Tandem , Ácido Aspártico/química , Humanos , Isomerismo , Peptídeos/química , Proteínas , Espectrometria de Massas em Tandem/métodos
7.
J Am Soc Mass Spectrom ; 33(4): 671-680, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35195991

RESUMO

Research in natural products (NPs) has gained interest as drug developers turn to nature to combat problems with drug resistance, drug delivery, and emerging diseases. Whereas NPs offer a tantalizing source of new pharmacologically active compounds, their structural complexity presents a challenge for analytical characterization and organic synthesis. Of particular concern is the characterization of cyclic-, polycyclic-, or macrocyclic compounds. One example of endogenous compounds as inspiration for NP development are cobalamins, like vitamin B12. An example of exogenous NPs is the class of macrolides that includes erythromycin. Both classes of macrocycles feature analogues with a range of modifications on their macrocyclic cores, but because of their cyclic nature, they are generally resistant to fragmentation by collision-induced dissociation (CID). In the present work, charge-transfer dissociation (CTD) was employed, with or without supplemental collisional activation, to produce radical-driven, high-energy fragmentation products of different macrocyclic precursors. With the assistance of collisional activation of CTnoD products, CTD frequently cleaved two covalent bonds within the macrocycle cores to reveal rich, informative spectra that helped identify sites of modification and resolve structural analogues. In a third example of macrocycle fragmentation, CTD enabled an impurity in a biological sample to be characterized as a cyclic polymer of nylon-6,6. In each example, CTD spectra are starkly different from CID and are highly reminiscent of other high-energy fragmentation techniques like extreme ultraviolet dissociative photoionization (XUV-DPI) and electron ionization-induced dissociation (EID). The results indicate that CTD-MS is a useful tool for the characterization of natural and synthetic macrocycles.


Assuntos
Eritromicina , Espectrometria de Massas/métodos
8.
Anal Bioanal Chem ; 414(1): 303-318, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34050776

RESUMO

Ultra-high-performance liquid chromatography (UHPLC) with charge transfer dissociation mass spectrometry (CTD-MS) is presented for the analysis of a mixture of complex sulfated oligosaccharides. The mixture contained kappa (κ), iota (ι), and lambda (λ) carrageenans that contain anhydro bridges, different degrees of sulfation ranging from one to three per dimer, different positioning of the sulfate groups along the backbone, and varying degrees of polymerization (DP) between 4 and 12. Optimization studies using standard mixtures of carrageenans helped establish the optimal conditions for online UHPLC-CTD-MS/MS analysis. Optimization included (1) UHPLC conditions; (2) ion source conditions, such as the capillary voltage, drying gas and nebulizing gas temperature, and flow rate; and (3) CTD-MS conditions, including data-dependent CTD-MS. The UHPLC-CTD results were contrasted with UHPLC-CID results of the same mixture on the same instrument. Whereas CID tends to produce B/Y and C/Z ions with many neutral losses, CTD produced more abundant A/X ions and less abundant neutral losses, which enabled more confident structural detail. The results demonstrate that He-CTD is compatible with the timescale of UHPLC and provides more structural information about carrageenans compared to state-of-the-art methods like UHPLC-CID analysis.


Assuntos
Carragenina/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Oligossacarídeos/química , Rodófitas/química , Configuração de Carboidratos
9.
Rapid Commun Mass Spectrom ; 36(5): e9246, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34927767

RESUMO

RATIONALE: The function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations. METHODS: Four model peptides and two wild-type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three-dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision-induced dissociation spectra of the same peptides obtained using the same instrument. RESULTS: CTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side-chain cleavages, including d, w and v ions. Using CTD, reliable d and w ions of Xle residues were observed more than 80% of the time. When present, d ions are typically greater than 10% of the abundance of the corresponding a ions from which they derive, and w ions are typically more abundant than the z ions from which they derive. CONCLUSIONS: CTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high-energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.


Assuntos
Isoleucina/química , Leucina/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/instrumentação
10.
Anal Methods ; 13(31): 3493-3503, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34259690

RESUMO

Various samples of the Eastern oyster, Crassostrea virginica, were collected from five harvest bay areas in the Gulf of Mexico coastal waters of Florida (FL), Louisiana (LA) and Texas (TX). Cadmium and lead concentrations from the extracted whole-body soft tissues were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), and bulk δ13C and δ15N isotope ratios and amino-acid-specific δ13C values were analyzed via isotope ratio mass-spectrometry (IRMS). The combined data was subjected to multivariate statistical analysis to assess whether oysters could be linked to their harvest area. Results indicate that discriminant analysis using the δ13C values of five amino acids-serine, glycine, valine, lysine and phenylalanine-could discriminate oysters from two adjacent harvesting in Florida with 90% success rate, using leave-one-out cross validation. The combination of trace elements and isotope ratios could also predict geographic provenance of oysters with a success rate superior to the isolated use of each technique. The combinatory approach proposed in this study is a proof-of-concept that compound specific stable isotope analysis is a potential tool for oyster fisheries managers, wildlife, and food safety enforcement officers, as well as to forensics and ecology research areas, although significantly more work would need to be completed to fully validate the approach and achieve more reliable statistical results.


Assuntos
Crassostrea , Metais Pesados , Animais , Pesqueiros , Isótopos , Frutos do Mar/análise
11.
J Mass Spectrom ; 56(7): e4774, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34180110

RESUMO

Alkali and alkaline earth metal adducts of a branched glycan, XXXG, were analyzed with helium charge transfer dissociation (He-CTD) and low-energy collision-induced dissociation (LE-CID) to investigate if metalation would impact the type of fragments generated and the structural characterization of the analyte. The studied adducts included 1+ and 2+ precursors involving one or more of the cations: H+ , Na+ , K+ , Ca2+ , and Mg2+ . Regardless of the metal adduct, He-CTD generated abundant and numerous glycosidic and cross-ring cleavages that were structurally informative and able to identify the 1,4-linkage and 1,6-branching patterns. In contrast, the LE-CID spectra mainly contained glycosidic cleavages, consecutive fragments, and numerous neutral losses, which complicated spectral interpretation. LE-CID of [M + K + H]2+ and [M + Na]+ precursors generated a few cross-ring cleavages, but they were not sufficient to identify the 1,4-linkage and 1,6-branching pattern of the XXXG xyloglucan. He-CTD predominantly generated 1+ fragments from 1+ precursors and 2+ product ions from 2+ precursors, although both LE-CID and He-CTD were able to generate 1+ product ions from 2+ adducts of magnesium and calcium. The singly charged fragments derive from the loss of H+ from the metalated product ions and the formation of a protonated complementary product ion; such observations are similar to previous reports for magnesium and calcium salts undergoing electron capture dissociation (ECD) activation. However, during He-CTD, the [M + Mg]2+ precursor generated more singly charged product ions than [M + Ca]2+ , either because Mg has a higher second ionization potential than Ca or because of conformational differences and the locations of the charging adducts during fragmentation. He-CTD of the [M + 2Na]2+ and the [M + 2 K]2+ precursors generated singly charged product ions from the loss of a sodium ion and potassium ion, respectively. In summary, although the metal ions influence the mass and charge state of the observed product ions, the metal ions had a negligible effect on the types of cross-ring cleavages observed.

12.
Int J Mass Spectrom ; 4622021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33679212

RESUMO

Charge transfer dissociation mass spectrometry (CTD-MS) has been shown to induce high energy fragmentation of biological ions in the gas phase and provide fragmentation spectra similar to extreme ultraviolet photodissociation (XUVPD). To date, CTD has typically employed helium cations with kinetic energies between 4-10 keV to initiate radical-directed fragmentation of analytes. However, as a reagent, helium has recently been listed as a critical mineral that is becoming scarcer and more expensive, so this study explored the potential for using cheaper and more readily available reagent gases. A model peptide, bradykinin, and a model oligosaccharide, κ-carrageenan with a degree of polymerization of 4, were fragmented using a variety of CTD reagent gases, which included helium, hydrogen, oxygen, nitrogen, argon and lab air. The CTD results were also contrasted with low-energy collision-induced dissociation (LE-CID), which were collected on the same 3D ion trap. Using constant reagent ion fluxes and kinetic energies, all five alterative reagent gases generated remarkably consistent sequence coverage and fragmentation efficiencies relative to He-CTD, which suggests that the ionization energy of the reagent gas has a negligible effect on the activation of the biological ions. The CTD efficiencies of all the gases ranged from 11-13% for bradykinin and 7-8% for κ-carrageenan. Within these tight ranges, the abundance of the CTnoD peak of bradykinin and the efficiency of CTD fragmentation of bradykinin both correlated with the ionization energy of the CTD reagent gas, which suggests that resonant charge transfer plays a small role in the activation of this peptide. The majority of the excitation energy for bradykinin and for κ-carrageenan comes from an electron stopping mechanism, which is described by long-range interactions between the reagent cations and electrons in the highest occupied molecular orbitals (HOMOs) of the biological ions. The CTD spectra do not provide any evidence for covalently bound products between the biological ions and the more-reactive gases like hydrogen, oxygen and nitrogen, which implies that the high kinetic energies of the reagent ions make them unavailable for covalent reactions. This work demonstrates that any of the substitute reagent gases tested are viable options for future CTD-MS experiments.

13.
Anal Chem ; 93(5): 2838-2847, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497195

RESUMO

Pectins are natural polysaccharides made from galacturonic acid residues, and they are widely used as an excipient in food and pharmaceutical industries. The degree of methyl-esterification, the monomeric composition, and the linkage pattern are all important factors that influence the physical and chemical properties of pectins, such as the solubility. This work focuses on the successful online coupling of charge transfer dissociation-mass spectrometry (CTD-MS) with ultrahigh-performance liquid chromatography (UHPLC) to differentiate isomers of oligogalacturonans derived from citrus pectins. This work employed CTD fragmentation of the pectin mixtures in data-dependent acquisition mode. Compared to the UHPLC with collision-induced dissociation mass spectrometry (UHPLC-CID-MS), UHPLC-CTD-MS yielded fewer ambiguous ions and more structurally informative results. The developed UHPLC-CTD-MS method resulted in abundant cross-ring cleavages-and especially 1,4Xn, 1,5Xn, and 2,4Xn ions-which helped to identify most of the isomers. The Gal A isomers differed only in the methyl group position along the galacturonic acid backbone. The combination of CTD in real time with UHPLC provides a new tool for the structural characterization of complex mixtures of oligogalacturonans and potentially other classes of oligosaccharides.


Assuntos
Oligossacarídeos , Polissacarídeos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Isomerismo , Espectrometria de Massas
14.
J Mass Spectrom ; 56(2): e4679, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410270

RESUMO

In-source collision-induced dissociation (CID) is commonly used with single-stage high-resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in-source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in-source CID and beam-type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in-source CID. Electrospray ionization-quadrupole time-of-flight (ESI-Q-TOF) mass spectrometry was used to generate product ion spectra from in-source CID and beam-type CID for a series of well-characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in-source CID and a range of collision energies for beam-type CID. The results indicate that large fragmentor potentials for in-source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam-type CID. Although conditions can be found in which in-source CID and beam-type CID provide similar overall spectra, the in-source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam-type CID.

15.
J Am Soc Mass Spectrom ; 31(10): 2143-2153, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820910

RESUMO

Glycosaminoglycans (GAGs) participate in a broad range of physiological processes, and their structures are of interest to researchers in structural biology and medicine. Although they are abundant in tissues and extracellular matrices, their structural heterogeneity makes them challenging analytes. Mass spectrometry, and more specifically, tandem mass spectrometry, is particularly well suited for their analysis. Many tandem mass spectrometry techniques have been examined for their suitability toward the structural characterization of GAGs. Threshold activation methods such as collision-induced dissociation (CID) produce mainly glycosidic cleavages and do not yield a broad range of structurally informative cross-ring fragments. Considerable research efforts have been directed at finding other means of dissociating gas-phase GAG ions to produce more comprehensive structural information. Here, we compare the structural information on GAGs obtained by charge-transfer dissociation (CTD) and electron detachment dissociation (EDD). EDD has previously been applied to GAGs and is known to produce both glycosidic and cross-ring cleavages in similar abundance. CTD has not previously been used to analyze GAGs but has been shown to produce abundant cross-ring cleavages and no sulfate loss when applied to another class of sulfated carbohydrates like algal polysaccharides. In contrast to EDD, which is restricted to FTICR mass spectrometers, CTD can be implemented on other platforms, such as ion trap mass spectrometers (ITMS). Here, we show the capability of CTD-ITMS to produce structurally significant details of the sites of modification in both heparan sulfate (HS) and chondroitin sulfate (CS) standards ranging in length from degree of polymerization (dp) 4 to dp6. EDD and CTD both yield more structural information than CID and yield similar fractional abundances to one another for glycosidic fragments, cross-ring fragments, and neutral losses.

16.
Drug Test Anal ; 12(7): 957-967, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246896

RESUMO

Fentanyl is a synthetic opioid that has been approved by the FDA as a general anesthetic because of its rapid onset and high potency. However, since 2013 an opioid epidemic involving fentanyl or fentanyl-related compounds (FRCs) has swept the United States and caused numerous deaths in every state. The identification of novel FRCs is complicated by the rapid turnover of modifications to the core fentanyl structure. In this study, a series of 16 FRCs were analyzed using electrospray ionization tandem mass spectrometry (ESI-MS/MS) to gain a deeper understanding of the conserved and unique fragmentation behaviors associated with substitution to the core fentanyl structure. This work provides an approach, based on the product ions from ESI-MS/MS, to identify the modification site(s) on the core fentanyl structure for FRCs. Five common locations of substitution to the core fentanyl structure were used to assess the effect of substitution on the fragmentation behavior of FRCs. The proposed fragmentation pathways are supported through the combination of isotopic labeling, multi-stage mass spectrometry (MSn ), and accurate mass measurements with high-resolution mass spectrometry (HRMS). The identification of primary product ions specific to regions of substitution provides an additional tool for the identification of the location of substitution to the core fentanyl structure, which ultimately will assist toxicologists and seized drug analysts in the identification of emerging FRCs.


Assuntos
Analgésicos Opioides/análise , Fentanila/análise , Espectrometria de Massas em Tandem/métodos , Analgésicos Opioides/química , Fentanila/química , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
J Am Soc Mass Spectrom ; 31(6): 1249-1259, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32309938

RESUMO

The connection between monosaccharides influences the structure, solubility, and biological function of carbohydrates. Although tandem mass spectrometry (MS/MS) often enables the compositional identification of carbohydrates, traditional MS/MS fragmentation methods fail to generate abundant cross-ring fragments of intrachain monosaccharides that could reveal carbohydrate connectivity. We examined the potential of helium-charge transfer dissociation (He-CTD) as a method of MS/MS to decipher the connectivity of ß-1,4- and ß-1,3-linked oligosaccharides. In contrast to collision-induced dissociation (CID), He-CTD of isolated oligosaccharide precursors produced both glycosidic and cross-ring cleavages of each monosaccharide. The radical-driven dissociation in He-CTD induced single cleavage events, without consecutive fragmentations, which facilitated structural interpretation. He-CTD of various standards up to a degree of polymerization of 7 showed that ß-1,4- and ß-1,3-linked carbohydrates can be distinguished based on diagnostic 3,5A fragment ions that are characteristic for ß-1,4-linkages. Overall, fragment ion spectra from He-CTD contained sufficient information to infer the connectivity specifically for each glycosidic bond. When testing He-CTD to resolve the order of ß-1,4- and ß-1,3-linkages in mixed-linked oligosaccharide standards, He-CTD spectra sometimes provided less confident assignment of connectivity. Ion mobility spectrometry-mass spectrometry (IMS-MS) of the standards indicated that ambiguity in the He-CTD spectra was caused by isobaric impurities in the mixed-linked oligosaccharides. Radical-driven dissociation induced by He-CTD can thus expand MS/MS to carbohydrate linkage analysis, as demonstrated by the comprehensive fragment ion spectra on native oligosaccharides. The determination of connectivity in true unknowns would benefit from the separation of isobaric precursors, through UPLC or IMS, before linkage determination via He-CTD.


Assuntos
Oligossacarídeos/análise , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos , Configuração de Carboidratos , Hélio/química , Isomerismo , Modelos Moleculares
18.
Drug Test Anal ; 12(4): 496-503, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898857

RESUMO

This study uses a combination of multi-stage mass spectrometry (MSn ), accurate mass measurements - with high-resolution mass spectrometry (HRMS) - and isotopic labeling to characterize the fragmentation behavior of fentanyl and 4-ANPP. By understanding the fragmentation behavior of fentanyl and its analogs in more detail, toxicologists and seized drug analysts will be better poised to identify new and emerging fentalogs, which are increasingly common and deadly adulterants in the growing opioid crisis. Throughout the literature the product ion at m/z 188 is often the most abundant fragment in the mass spectrometric analysis of fentanyl and fentanyl analogs, and this fragment is used for both qualitative and quantitative determinations. Our work shows there are at least three different structures for the isobaric fentanyl product ions at m/z 188, and they each form and fragment via different pathways. The development of fragmentation mechanisms to explain the observed fragmentation pathways of fentanyl and its main precursor 4-ANPP helps contribute to the advancement of knowledge about fentanyl fragmentation and could provide important information for the identification of future fentanyl analogs.


Assuntos
Analgésicos Opioides/química , Fentanila/química , Fentanila/análogos & derivados , Íons/análise , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos
19.
Anal Chem ; 92(4): 3014-3022, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31955563

RESUMO

This study describes the use of amino acid quantitation and amino-acid-specific isotope ratio analysis of scalp hair of American individuals to predict soft biometric traits about the donors. The scalp hair of each donor was washed, dried, homogenized and acid hydrolyzed before analysis using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). A variety of statistical tests examined the relationships between the amino acid variables and biometric questionnaire responses, the latter of which could be assessed as continuous variables-in the case of age or body mass index (BMI)-or as categorical variables in the case of sex and alcohol consumption. Correlations between biometric factors and amino acid δ13C values were more significant after controlling for the extent of 13C in the subjects' diets. Multivariate analysis revealed that the sex of a donor could be correctly predicted with cross-validated accuracies of 80% using the isotope ratios and 89% using amino acid quantities. Using amino acid δ13C values or quantities, the age of a subject could only be predicted with an accuracy of ±27 years (95% CI). Hair treatments, such as chemical straitening and dying, did not have any measurable effect on the isotope ratios or quantities of amino acids in the hair. Unexpectedly, the δ13C values of sulfur-containing amino acids were significantly different between teetotalers and subjects who consumed alcohol daily. Further refinement of this study, including larger cohorts with controlled behavioral states or genetic factors, could provide helpful investigative leads in forensic casework.


Assuntos
Aminoácidos/análise , Cabelo/química , Isótopos de Carbono , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Isótopos de Nitrogênio
20.
Anal Bioanal Chem ; 410(30): 7943-7954, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30357442

RESUMO

Adult blow flies are one of the first necrophagous insects to colonize fresh carcasses. The eggs they lay hatch into larvae, which then feed on the decomposing body. Like all organisms, blow flies "are what they eat," meaning that the isotopic composition of their body tissues reflects their diet. This manuscript combines ecology with a forensic application by using isotope ratio mass spectrometry (IRMS) to understand the relationship between the δ13C of amino acids in different carrion sources and the blow fly that feed on them. We also measure the amino acid-level fractionation that occurs at each major life stage of the blow flies. Adult blow flies from a commercial strain of Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) oviposited on raw pork muscle, beef muscle, or chicken liver. Larvae, pupae, and adult blow flies from each carrion were selected for amino acid compound-specific isotope analysis. Canonical discriminant analysis showed that flies were correctly classified to specific carrion types in 100% (original rules) and 96.8% (leave-one-out cross-validation [LOOCV]) of cases. Regarding life stages, we obtained 100% and 71% of correct classification in original rules and LOOCV, respectively. The isotope ratios of most of the essential amino acids did not significantly change between life stages (at 95% CI). However, some non-essential amino acids (Ala, Ser, and Glu) and some conditionally essential amino acids (Gly and Pro) were isotopically depleted in the adult stage. Except for the essential amino acids, the amino acids in larvae and pupae were enriched in 13C, and adult blow flies were depleted in 13C relative to the carrion on which they fed. These results make it possible to exclude potential sources of carrion as larval food. Amino acid-specific IRMS could help inform entomologists whether a fly has just arrived from another location to feed on a corpse or has emerged from a pupa whose feedstock was the corpse. Such insight could enhance the significance of blow flies for post-mortem interval determinations. The analytical ability to link organisms from one trophic level to another through the use of compound-specific isotope analysis of amino acids could have wide-reaching consequences in a variety of disciplines. Graphical abstract ᅟ.


Assuntos
Aminoácidos/química , Dípteros/química , Larva/química , Pupa/química , Animais , Cadáver , Isótopos de Carbono , Comportamento Alimentar , Alimentos , Ciências Forenses , Larva/crescimento & desenvolvimento , Mudanças Depois da Morte , Pupa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA