Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 34(11-12): 340-349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007004

RESUMO

Objective: Inhalation exposure systems are tools for delivering compounds (particles, vapors, and gases) under well-controlled conditions for toxicological testing. The objective of this project was to develop an automated computer-controlled system to expose small laboratory animals to precise concentrations of crude oil vapor (COV).Materials and Methods: Vapor from heated Deepwater Horizon surrogate oil was atomized into a fine mist then diluted with filtered air, then the air/droplet mixture was routed into an evaporation column with an high efficiency particulate air (HEPA) filter on its exit port. The HEPA filter was used to remove oil particles, thus ensuring only vapor would pass. The vapor was then introduced into a custom-built exposure chamber housing rats. A calibrated flame ionization detector was used to read the total volatile organic compounds (TVOC) in real time, and custom software was developed to automatically adjust the amount of oil entering the atomizer with a syringe pump. The software also controlled relative humidity and pressure inside the exposure chamber. Other exposure chamber environmental parameters, e.g. temperature and CO2 levels, were monitored. Four specific components within the COV were monitored during each exposure: benzene, toluene, ethylbenzene, and xylenes.Results: The TVOC vapor concentration control algorithm maintained median concentrations to within ±2 ppm of the target concentration (300 ppm) of TVOC during exposures lasting 6 h. The system could reach 90% of the desired target in less than 15 min, and repeat exposures were consistent and reproducible.Conclusion: This exposure system provided a highly automated tool for conducting COV inhalation toxicology studies.


Assuntos
Petróleo , Compostos Orgânicos Voláteis , Ratos , Animais , Exposição por Inalação , Compostos Orgânicos Voláteis/toxicidade , Benzeno , Xilenos , Dióxido de Carbono , Gases , Tolueno
2.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798068

RESUMO

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Assuntos
Petróleo , Resistência das Vias Respiratórias , Animais , Exposição por Inalação/efeitos adversos , Pulmão , Cloreto de Metacolina/farmacologia , Petróleo/toxicidade , Ratos
3.
Toxicol Appl Pharmacol ; 449: 116137, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750205

RESUMO

Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.


Assuntos
Síndromes Neurotóxicas , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Gases , Masculino , Síndromes Neurotóxicas/etiologia , Neurotransmissores , Ratos , Ratos Sprague-Dawley , Serotonina , Poluentes Químicos da Água/toxicidade
4.
Toxicol Appl Pharmacol ; 409: 115300, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33141058

RESUMO

Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Areia/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Aerossóis/efeitos adversos , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Poeira , Monitoramento Ambiental/métodos , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Ratos , Ratos Sprague-Dawley
5.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068619

RESUMO

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Células Epiteliais/efeitos dos fármacos , Fraturamento Hidráulico/métodos , Masculino , Cloreto de Metacolina/farmacologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Traqueia/efeitos dos fármacos
6.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068622

RESUMO

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Areia/química , Silicose/etiologia , Traqueia/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Poeira , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Quartzo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/efeitos adversos
7.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27643531

RESUMO

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Assuntos
Diacetil/efeitos adversos , Aromatizantes/efeitos adversos , Pneumopatias/etiologia , Proteína Sequestossoma-1/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Ubiquitina/metabolismo , Animais , Autofagia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Pneumopatias/patologia , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Proteína Sequestossoma-1/genética , Desidrogenase do Álcool de Açúcar/metabolismo
8.
J Expo Sci Environ Epidemiol ; 24(3): 305-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24084757

RESUMO

Despite long-standing awareness of adverse health effects associated with chronic human exposure to formaldehyde, this hazardous air pollutant remains a challenge to measure in indoor environments. Traditional analytical techniques evaluate formaldehyde concentrations over several hours to several days in a single location in a residence, making it difficult to characterize daily temporal and spatial variation in human exposure to formaldehyde. There is a need for portable, easy-to-use devices that are specific and sensitive to gas-phase formaldehyde over short sampling periods so that dynamic processes governing formaldehyde fate, transport, and potential remediation in indoor environments may be studied more effectively. A recently developed device couples a chemical sensor element with spectrophotometric analysis for detection and quantification of part per billion (ppbv) gas-phase formaldehyde concentrations. This study established the ability of the coupled sensor-spectrophotometric device (CSSD) to report formaldehyde concentrations accurately and continuously on a 30-min sampling cycle at low ppbv concentrations previously untested for this device in a laboratory setting. Determination of the method detection limit (MDL), based on 40 samples each at test concentrations of 5 and 10 ppbv, was found to be 1.9 and 2.0 ppbv, respectively. Performance of the CSSD was compared with the dinitrophenylhydrazine (DNPH) derivatization method for formaldehyde concentrations ranging from 5-50 ppbv, and a linear relationship with a coefficient of determination of 0.983 was found between these two analytical techniques. The CSSD was also used to monitor indoor formaldehyde concentrations in two manufactured homes. During this time, formaldehyde concentrations varied from below detection limit to 65 ppbv and were above the US National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) of 16 ppbv, which is also the exposure limit value now adopted by the US Federal Emergency Management Agency (FEMA) to procure manufactured housing, 80% and 100% of the time, respectively.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados , Formaldeído/análise , Espectrofotometria/instrumentação , Limite de Detecção , Espectrofotometria/métodos
9.
Toxicol Pathol ; 42(3): 582-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23847039

RESUMO

Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 ± 0.002 in controls to 0.05 ± 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 ± 3.0% in controls to 25.5 ± 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis.


Assuntos
Diacetil/toxicidade , Mucosa Respiratória , Substância P/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Animais , Corantes Fluorescentes , Exposição por Inalação , Masculino , Neurônios/química , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/química , Mucosa Respiratória/efeitos dos fármacos , Traqueia/citologia
10.
J Toxicol Environ Health A ; 76(11): 669-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23941636

RESUMO

"Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.


Assuntos
Hiper-Reatividade Brônquica/induzido quimicamente , Diacetil/toxicidade , Aromatizantes/toxicidade , Pentanonas/toxicidade , Traqueia/efeitos dos fármacos , Ácido Acético/toxicidade , Acetoína/toxicidade , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica , Células Cultivadas , Misturas Complexas/toxicidade , Alimentos , Exposição por Inalação , Masculino , Cloreto de Metacolina , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traqueia/fisiopatologia
11.
Am J Pathol ; 181(3): 829-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22894831

RESUMO

Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.


Assuntos
Bulbo Olfatório/patologia , Pentanonas/administração & dosagem , Pentanonas/toxicidade , Sistema Respiratório/patologia , Administração por Inalação , Animais , Caderinas/metabolismo , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Diacetil/toxicidade , Epitélio/efeitos dos fármacos , Epitélio/patologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Bulbo Olfatório/efeitos dos fármacos , Proteína de Marcador Olfatório/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Coloração e Rotulagem , Desidrogenase do Álcool de Açúcar/metabolismo , Fatores de Tempo
13.
J Toxicol Environ Health A ; 74(5): 287-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21240729

RESUMO

Penh is a dimensionless index normally used to evaluate changes in the shape of the airflow pattern entering and leaving a whole-body flow plethysmograph as an animal breathes. The index is sensitive to changes in the distribution of area under the waveform during exhalation and increases in a nonlinear fashion as the normalized area increases near the beginning of the curve. Enhanced pause (Penh) has been used to evaluate changes in pulmonary function and as a method to evaluate airway reactivity. However, the use of Penh to assess pulmonary function has been challenged (Bates et al., 2004; Lundblad et al., 2002; Mitzner et al., 2003; Mitzner & Tankersley, 1998; Petak et al., 2001; Sly et al., 2005). The objective of this study was to show how Penh of the thorax and plethysmograph flow patterns are related. That relationship is used to describe the conditions under which whole-body plethysmograph Penh measurements can be used to detect changes in sRaw.


Assuntos
Resistência das Vias Respiratórias , Pletismografia Total , Ventilação Pulmonar , Transtornos Respiratórios/diagnóstico , Resistência das Vias Respiratórias/efeitos dos fármacos , Algoritmos , Animais , Broncoconstritores/toxicidade , Cloreto de Metacolina/toxicidade , Modelos Biológicos , Transtornos Respiratórios/induzido quimicamente , Transtornos Respiratórios/fisiopatologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/fisiopatologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA