Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecohealth ; 21(1): 94-111, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372845

RESUMO

Ecological information on wildlife reservoirs is fundamental for research targeting prevention of zoonotic infectious disease, yet basic information is lacking for many species in global hotspots of disease emergence. We provide the first estimates of synchronicity, magnitude, and timing of seasonal birthing in Mops condylurus, a putative ebolavirus host, and a co-roosting species, Mops pumilus (formerly Chaerephon pumilus). We show that population-level synchronicity of M. condylurus birthing is wide (~ 8.5 weeks) and even wider in M. pumilus (> 11 weeks). This is predicted to promote the likelihood of filovirus persistence under conditions of bi-annual birthing (two births per year). Ecological features underlying the magnitude of the birth pulse-relative female abundance (higher than expected for M. condylurus and lower for M. pumilus, based on literature) and reproductive rate (lower than expected)-will have countering effects on birthing magnitude. Species-specific models are needed to interpret how identified birth pulse attributes may interact with other features of molossid ebolavirus ecology to influence infection dynamics. As a common feature of wildlife species, and a key driver of infection dynamics, detailed information on seasonal birthing will be fundamental for future research on these species and will be informative for bat-borne zoonoses generally.


Assuntos
Quirópteros , Estações do Ano , Animais , Quirópteros/virologia , Feminino , Quênia/epidemiologia , Reservatórios de Doenças/virologia , Doença pelo Vírus Ebola/epidemiologia , Ebolavirus , Parto , Zoonoses/virologia
2.
PLoS Negl Trop Dis ; 18(2): e0011988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412171

RESUMO

Simultaneous use of domestic spaces by humans and wildlife is little understood, despite global ubiquity, and can create an interface for human exposure to wildlife pathogens. Bats are a pervasive synanthropic taxon and are associated with several pathogens that can spill over and cause disease in humans. Urbanization has destroyed much natural bat habitat and, in response, many species increasingly use buildings as roosts. The purpose of this study was to characterize human interactions with bats in shared buildings to assess potential for human exposure to and spillover of bat-borne pathogens. We surveyed 102 people living and working in buildings used as bat roosts in Taita-Taveta county, Kenya between 2021 and 2023. We characterized and quantified the duration, intensity, and frequency of human-bat interactions occurring in this common domestic setting. Survey respondents reported living with bats in buildings year-round, with cohabitation occurring consistently for at least 10 years in 38% of cases. Human contact with bats occurred primarily through direct and indirect routes, including exposure to excrement (90% of respondents), and direct touching of bats (39% of respondents). Indirect contacts most often occurred daily, and direct contacts most often occurred yearly. Domestic animal consumption of bats was also reported (16% of respondents). We demonstrate that shared building use by bats and humans in rural Kenya leads to prolonged, frequent, and sometimes intense interactions between bats and humans, consistent with interfaces that can facilitate exposure to bat pathogens and subsequent spillover. Identifying and understanding the settings and practices that may lead to zoonotic pathogen spillover is of great global importance for developing countermeasures, and this study establishes bat roosts in buildings as such a setting.


Assuntos
Quirópteros , Animais , Humanos , Quênia/epidemiologia , Zoonoses , Inquéritos e Questionários , Ecossistema
3.
R Soc Open Sci ; 10(9): 230578, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711150

RESUMO

Many wildlife species are synanthropic and use structures built by humans, creating a high-risk interface for human-wildlife conflict and zoonotic pathogen spillover. However, studies that investigate features of urbanizing areas that attract or repel wildlife are currently lacking. We surveyed 85 buildings used by bats and 172 neighbouring buildings unused by bats (controls) in southeastern Kenya during 2021 and 2022 and evaluated the role of microclimate and structural attributes in building selection. We identified eight bat species using buildings, with over 25% of building roosts used concurrently by multiple species. Bats selected taller cement-walled buildings with higher water vapour pressure and lower presence of permanent human occupants. However, roost selection criteria differed across the most common bat species: molossids selected structures like those identified by our main dataset whereas Cardioderma cor selected buildings with lower presence of permanent human occupants. Our results show that roost selection of synanthropic bat species is based on specific buildings attributes. Further, selection criteria that facilitate bat use of buildings are not homogeneous across species. These results provide information on the general mechanisms of bat-human contact in rural settings, as well as specific information on roost selection for synanthropic bats in urbanizing Africa.

4.
Ecol Evol ; 12(7): e9113, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845385

RESUMO

Prior to the introduction of white-nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS-affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT-tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from -1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small-footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid-hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid-hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium-high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid-hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species-specific conservation actions.

5.
Sci Rep ; 12(1): 5688, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383238

RESUMO

Studies examining the overwintering behaviors of North American hibernating bats are limited to a handful of species. We deployed temperature-sensitive transmitters on four species of bat that exhibit differences in their susceptibility to white nose syndrome (WNS; Myotis grisescens, M. leibii, M. sodalis, and Perimyotis subflavus) to determine if these differences are correlated with behavior exhibited during hibernation (i.e., torpor expression and arousal frequency). Mean torpor skin temperature (Tsk) and torpor bout duration varied significantly among species (P ≤ 0.024), but arousal Tsk and duration did not (P ≥ 0.057). One of the species with low susceptibility to WNS, M. leibii, had significantly shorter torpor bout durations (37.67 ± 26.89 h) than M. sodalis (260.67 ± 41.33 h), the species with medium susceptibility to WNS. Myotis leibii also had significantly higher torpor Tsk (18.57 °C ± 0.20) than M. grisescens (13.33 °C ± 0.60), a second species with low WNS susceptibility. The high susceptibility species, Perimyotis subflavus, exhibited low torpor Tsk (14.42 °C ± 0.36) but short torpor bouts (72.36 ± 32.16 h). We demonstrate that the four cavernicolous species examined exhibit a wide range in torpid skin temperature and torpor bout duration. Information from this study may improve WNS management in multispecies hibernacula or individual species management by providing insight into how some species may differ in their techniques for overwinter survival.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Nariz , Estações do Ano
6.
Front Zool ; 18(1): 48, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556122

RESUMO

Temperate bat species use extended torpor to conserve energy when ambient temperatures are low and food resources are scarce. Previous research suggests that migratory bat species and species known to roost in thermally unstable locations, such as those that roost in trees, are more likely to remain active during winter. However, hibernating colonies of cave roosting bats in the southeastern United States may also be active and emerge from caves throughout the hibernation period. We report what bats are eating during these bouts of winter activity. We captured 2,044 bats of 10 species that emerged from six hibernacula over the course of 5 winters (October-April 2012/2013, 2013/2014, 2015/2016, 2016/2017, and 2017/2018). Using Next Generation sequencing of DNA from 284 fecal samples, we determined bats consumed at least 14 Orders of insect prey while active. Dietary composition did not vary among bat species; however, we did record variation in the dominant prey items represented in species' diets. We recorded Lepidoptera in the diet of 72.2% of individual Corynorhinus rafinesquii and 67.4% of individual Lasiurus borealis. Diptera were recorded in 32.4% of Myotis leibii, 37.4% of M. lucifugus, 35.5% of M. sodalis and 68.8% of Perimyotis subflavus. Our study is the first to use molecular genetic techniques to identify the winter diet of North American hibernating bats. The information from this study is integral to managing the landscape around bat hibernacula for insect prey, particularly in areas where hibernating bat populations are threatened by white-nose syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA