RESUMO
Browning of surface waters due to increased terrestrial loading of dissolved organic matter (DOM) is observed across the Northern Hemisphere. The effects influence several ecosystem services from freshwater productivity to water purification. Brownification is often explained by changes in large-scale anthropogenic pressures and ecosystem functioning (acidification, climate change, and land cover changes). This study examined the effect of forest use changes on water browning in Finland, considering the effects of global pressures. Our goal was to find the ecosystems and geographic areas that are most sensitive to environmental pressures that increase the loading of DOM. We were also looking for land use strategies that decrease browning. We combined mathematical watershed modelling to scenarios of climate change, atmospheric deposition, and forest use change. Changes included scenarios of forest harvest and protection on forest, that were derived from European Union's regulation. The study area covered 20 watersheds from south to north of Finland. In northern Finland brownification continue. In southern Finland global influence (atmospheric deposition, climate change) seem to weaken, giving more space for local forest use change having an influence on brownification. Forest use change was more influential in river basins dominated by organic soils than in mineral soils. Extending forest protection decreased brownification especially in areas where the influence of atmospheric pressure is decreasing. When forest protection is planned to provide a carbon storage and sequestration potential and to favor biodiversity, it has favorable effect on surface water quality as well.
RESUMO
Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reservoirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynamics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a feasible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in this study for four catchment-lake systems to help in their proactive management. We assessed the performance of the resulting seasonal forecasts of discharge and water temperature by comparing them with hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Forecasts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low performance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had higher performance in natural lakes than in reservoirs, which means human water control is a relevant factor affecting predictability, and the performance increases with water depth in all four case studies. Further investigation into the skillful water temperature predictions should aim to identify the extent to which performance is a consequence of thermal inertia (i.e., lead-in conditions).
Assuntos
Lagos , Água , Austrália , Europa (Continente) , Previsões , Humanos , Estações do Ano , TemperaturaRESUMO
This paper presents an application of integrated methodological approach for identifying cost-effective combinations of agri-environmental measures to achieve water quality targets. The methodological approach involves linking hydro-chemical modelling with economic costs of mitigation measures. The utility of the approach was explored for the River Dee catchment in North East Scotland, examining the cost-effectiveness of mitigation measures for nitrogen (N) and phosphorus (P) pollutants. In-stream nitrate concentration was modelled using the STREAM-N and phosphorus using INCA-P model. Both models were first run for baseline conditions and then their effectiveness for changes in land management was simulated. Costs were based on farm income foregone, capital and operational expenditures. The costs and effects data were integrated using 'Risk Solver Platform' optimization in excel to produce the most cost-effective combination of measures by which target nutrient reductions could be attained at a minimum economic cost. The analysis identified different combination of measures as most cost-effective for the two pollutants. An important aspect of this paper is integration of model-based effectiveness estimates with economic cost of measures for cost-effectiveness analysis of land and water management options. The methodological approach developed is not limited to the two pollutants and the selected agri-environmental measures considered in the paper; the approach can be adapted to the cost-effectiveness analysis of any catchment-scale environmental management options.
Assuntos
Agricultura/métodos , Análise Custo-Benefício , Poluentes Químicos da Água/análise , Qualidade da Água , Modelos Teóricos , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Rios , Escócia , Água/análiseRESUMO
In 1999 we used the MAGIC (Model of Acidification of Groundwater In Catchments) model to project acidification of acid-sensitive European surface waters in the year 2010, given implementation of the Gothenburg Protocol to the Convention on Long-Range Transboundary Air Pollution (LRTAP). A total of 202 sites in 10 regions in Europe were studied. These forecasts can now be compared with measurements for the year 2010, to give a "ground truth" evaluation of the model. The prerequisite for this test is that the actual sulfur and nitrogen deposition decreased from 1995 to 2010 by the same amount as that used to drive the model forecasts; this was largely the case for sulfur, but less so for nitrogen, and the simulated surface water [NO3(-)] reflected this difference. For most of the sites, predicted surface water recovery from acidification for the year 2010 is very close to the actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition.