Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102691, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372233

RESUMO

DNA methylation potentially contributes to the pathogenesis of pulmonary hypertension (PH). However, the role of DNA methyltransferases (DNMTs: 1, 3a, and 3b), the epigenetic writers, in modulating DNA methylation observed in PH remains elusive. Our objective was to determine DNMT activity and expression in the lungs of experimental rat models of PH. Because the activity of DNMTs is metabolically driven, another objective was to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in regulating DNMT expression and activity in the lungs of novel loss-of-function Mediterranean G6PD variant (G6PDS188F) rats. As outlined for modeling PH, rats injected with sugen5416 (SU) were placed in a hypoxia (Hx) chamber set at 10% oxygen for 3 weeks and then returned to normoxia (Nx) for 5 weeks (SU/Hx/Nx). Rats kept in atmospheric oxygen and treated with SU were used as controls. We assessed the activity and expression of DNMTs in the lungs of rats exposed to SU/Hx/Nx. WT rats exposed to SU/Hx/Nx developed hypertension and exhibited increased DNMT activity and Dnmt1 and Dnmt3b expression. In G6PDS188F rats, which developed less of a SU/Hx/Nx-induced increase in right ventricle pressure and hypertrophy than WT rats, we observed a diminished increase in expression and activity of DNMTs, DNA hypomethylation, increased histone acetylation and methylation, and increased expression of genes encoding NOS3 and SOD2-vascular-protective proteins. Collectively, increased DNMTs contribute to reduced expression of protective genes and to the pathogenesis of SU/Hx/Nx-induced experimental PH. Notably, G6PD regulates the expression of DNMTs and protective proteins in the lungs of hypertensive rats.


Assuntos
Metilases de Modificação do DNA , Regulação Enzimológica da Expressão Gênica , Glucosefosfato Desidrogenase , Hipertensão Pulmonar , Animais , Ratos , Metilação de DNA , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hipertensão Pulmonar/genética , Oxigênio , Hipóxia Celular , Metilases de Modificação do DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Modelos Animais de Doenças
2.
Physiol Rep ; 10(10): e15282, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581740

RESUMO

The loss of ten-eleven translocation (TET2) methylcytosine dioxygenase expression contributes to the pathobiology of pulmonary arterial hypertension (PAH). However, whether the expression and activity of other TETs and DNA methyltransferases (DNMTs) are altered in PAH remains enigmatic. Therefore, our objective was to determine the expression of DNMT (1, 3a, and 3b) and TET (1, 2, and 3) and their total activity. We assessed the expression of DNMT and TET enzymes in the leukocytes and their activity in extracellular vesicles (EVs). Expression of DNMT (1, 3a, and 3b), TET (2 and 3) in leukocytes, and total activity in EVs, from PAH patients was higher than in healthy controls. Additionally, we noticed there were difference in expression of these epigenetic enzyme based on ethnicity and found higher DNMT1 and lower TET2/TET3 expression in Caucasian than Hispanic/African American (combine) patients. Since loss-of-function mutation(s) and down-regulation of TET enzymes are associated with hematological malignancies and cytokine production, we determined the expression of genes that encode cytokines in samples of Caucasian and Hispanic/African American patients. Expression of IL6, CSF2, and CCL5 genes were higher in the leukocytes of Caucasian than Hispanic/African American patients, and CSF2 and CCL5 negatively correlated with the decreased expression of TET3. Interestingly, the expression of gene encoding CD34, a marker of myeloid and lymphoid precursor cells, and CD163, a monocyte/macrophage protein, was higher in the leukocytes of Caucasian than Hispanic/African American patients. Furthermore, Hispanic/African American patients having higher TET2/TET3 expression had higher pulmonary capillary wedge pressure. In conclusion, our results revealed higher DNMT1 and lower TET2/TET3 in Caucasian than Hispanic/African American patients together potentially augmented genes encoding inflammation causing cytokines, and CD34+ -derived immunogenic cells, and the severity of PAH.


Assuntos
Etnicidade , Hipertensão Arterial Pulmonar , Citocinas , DNA , Humanos , Leucócitos/metabolismo , Metiltransferases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
3.
J Smooth Muscle Res ; 58(0): 34-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491127

RESUMO

Although hypoxia induces aberrant gene expression and dedifferentiation of smooth muscle cells (SMCs), mechanisms that alter dedifferentiation gene expression by hypoxia remain unclear. Therefore, we aimed to gain insight into the hypoxia-controlled gene expression in SMCs. We conducted studies using SMCs cultured in 3% oxygen (hypoxia) and the lungs of mice exposed to 10% oxygen (hypoxia). Our results suggest hypoxia upregulated expression of transcription factor CP2-like protein1, krüppel-like factor 4, and E2f transcription factor 1 enriched genes including basonuclin 2 (Bcn2), serum response factor (Srf), polycomb 3 (Cbx8), homeobox D9 (Hoxd9), lysine demethylase 1A (Kdm1a), etc. Additionally, we found that silencing glucose-6-phosphate dehydrogenase (G6PD) expression and inhibiting G6PD activity downregulated Srf transcript and hypomethylation of SMC genes (Myocd, Myh11, and Cnn1) and concomitantly increased their expression in the lungs of hypoxic mice. Furthermore, G6PD inhibition hypomethylated MEG3, a long non-coding RNA, gene and upregulated MEG3 expression in the lungs of hypoxic mice and in hypoxic SMCs. Silencing MEG3 expression in SMC mitigated the hypoxia-induced transcription of SRF. These findings collectively demonstrate that MEG3 and G6PD codependently regulate Srf expression in hypoxic SMCs. Moreover, G6PD inhibition upregulated SRF-MYOCD-driven gene expression, determinant of a differentiated SMC phenotype.


Assuntos
Glucosefosfato Desidrogenase , RNA Longo não Codificante/genética , Fator de Resposta Sérica , Animais , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
4.
J Psychiatr Res ; 146: 87-91, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959163

RESUMO

There is limited literature on the long-term relationship between the diagnosis of factor V Leiden (FVL) and depression. Therefore, the aim of this retrospective cohort study was to investigate the association between FVL and the 10-year incidence of depression in Germany. Patients diagnosed with FVL for the first time in one of 1,274 general practices in Germany between 2000 and 2019 were included in this study (index date). Patients without FVL were matched (1:5) to those with FVL by sex, age, index year, and the average number of consultations per year. In individuals without FVL, index date corresponded to a randomly selected visit date between 2000 and 2019. The association between the diagnosis of FVL and the 10-year incidence of depression was analyzed using Kaplan-Meier curves and Cox regression models. This study included 1,070 patients with and 5,350 patients without FVL (64.9% women; 46.0 [16.5] years). Ten years after the index date, 21.4% and 14.1% of individuals with and without FVL were diagnosed with depression, respectively (log-rank p-value<0.001). After adjusting for thromboembolic events, the Cox regression analysis further showed that FVL was associated with a significant increase in the incidence of depression (HR = 1.61, 95% CI = 1.33-1.95). In this study conducted in Germany, FVL was identified as a long-term risk factor for depression. More research is needed to confirm or refute the present findings in other settings.


Assuntos
Depressão , Fator V , Depressão/epidemiologia , Feminino , Humanos , Incidência , Masculino , Estudos Retrospectivos
5.
J Pharmacol Exp Ther ; 377(2): 284-292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33758056

RESUMO

Pulmonary hypertension (PH) is a disease of hyperplasia of pulmonary vascular cells. The pentose phosphate pathway (PPP)-a fundamental glucose metabolism pathway-is vital for cell growth. Because treatment of PH is inadequate, our goal was to determine whether inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, prevents maladaptive gene expression that promotes smooth muscle cell (SMC) growth, reduces pulmonary artery remodeling, and normalizes hemodynamics in experimental models of PH. PH was induced in mice by exposure to 10% oxygen (Hx) or weekly injection of vascular endothelial growth factor receptor blocker [Sugen5416 (SU); 20 mg kg-1] during exposure to hypoxia (Hx + SU). A novel G6PD inhibitor (N-[(3ß,5α)-17-oxoandrostan-3-yl]sulfamide; 1.5 mg kg-1) was injected daily during exposure to Hx. We measured right ventricle (RV) pressure and left ventricle pressure-volume relationships and gene expression in lungs of normoxic, Hx, and Hx + SU and G6PD inhibitor-treated mice. RV systolic and end-diastolic pressures were higher in Hx and Hx + SU than normoxic control mice. Hx and Hx + SU decreased expression of epigenetic modifiers (writers and erasers), increased hypomethylation of the DNA, and induced aberrant gene expression in lungs. G6PD inhibition decreased maladaptive expression of genes and SMC growth, reduced pulmonary vascular remodeling, and decreased right ventricle pressures compared with untreated PH groups. Pharmacologic inhibition of G6PD activity, by normalizing activity of epigenetic modifiers and DNA methylation, efficaciously reduces RV pressure overload in Hx and Hx + SU mice and preclinical models of PH and appears to be a safe pharmacotherapeutic strategy. SIGNIFICANCE STATEMENT: The results of this study demonstrated that inhibition of a metabolic enzyme efficaciously reduces pulmonary hypertension. For the first time, this study shows that a novel inhibitor of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme in the fundamental pentose phosphate pathway, modulates DNA methylation and alleviates pulmonary artery remodeling and dilates pulmonary artery to reduce pulmonary hypertension.


Assuntos
Cardiomegalia/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glucosefosfato Desidrogenase/antagonistas & inibidores , Hipertensão Pulmonar/tratamento farmacológico , Animais , Pressão Sanguínea , Cardiomegalia/etiologia , Hipóxia Celular , Células Cultivadas , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Indóis/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Pirróis/toxicidade , Função Ventricular Direita
6.
Am J Physiol Heart Circ Physiol ; 320(3): H999-H1016, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416454

RESUMO

We aimed to determine 1) the mechanism(s) that enables glucose-6-phosphate dehydrogenase (G6PD) to regulate serum response factor (SRF)- and myocardin (MYOCD)-driven smooth muscle cell (SMC)-restricted gene expression, a process that aids in the differentiation of SMCs, and 2) whether G6PD-mediated metabolic reprogramming contributes to the pathogenesis of vascular diseases in metabolic syndrome (MetS). Inhibition of G6PD activity increased (>30%) expression of SMC-restricted genes and concurrently decreased (40%) the growth of human and rat SMCs ex vivo. Expression of SMC-restricted genes decreased (>100-fold) across successive passages in primary cultures of SMCs isolated from mouse aorta. G6PD inhibition increased Myh11 (47%) while decreasing (>50%) Sca-1, a stem cell marker, in cells passaged seven times. Similarly, CRISPR-Cas9-mediated expression of the loss-of-function Mediterranean variant of G6PD (S188F; G6PDS188F) in rats promoted transcription of SMC-restricted genes. G6PD knockdown or inhibition decreased (48.5%) histone deacetylase (HDAC) activity, enriched (by 3-fold) H3K27ac on the Myocd promoter, and increased Myocd and Myh11 expression. Interestingly, G6PD activity was significantly higher in aortas from JCR rats with MetS than control Sprague-Dawley (SD) rats. Treating JCR rats with epiandrosterone (30 mg/kg/day), a G6PD inhibitor, increased expression of SMC-restricted genes, suppressed Serpine1 and Epha4, and reduced blood pressure. Moreover, feeding SD control (littermates) and G6PDS188F rats a high-fat diet for 4 mo increased Serpine1 and Epha4 expression and mean arterial pressure in SD but not G6PDS188F rats. Our findings demonstrate that G6PD downregulates transcription of SMC-restricted genes through HDAC-dependent deacetylation and potentially augments the severity of vascular diseases associated with MetS.NEW & NOTEWORTHY This study gives detailed mechanistic insight about the regulation of smooth muscle cell (SMC) phenotype by metabolic reprogramming and glucose-6-phosphate dehydrogenase (G6PD) in diabetes and metabolic syndrome. We demonstrate that G6PD controls the chromatin modifications by regulating histone deacetylase (HDAC) activity, which deacetylates histone 3-lysine 9 and 27. Notably, inhibition of G6PD decreases HDAC activity and enriches H3K27ac on myocardin gene promoter to enhance the expression of SMC-restricted genes. Also, we demonstrate for the first time that G6PD inhibitor treatment accentuates metabolic and transcriptomic reprogramming to reduce neointimal formation in coronary artery and large artery elastance in metabolic syndrome rats.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Histonas/metabolismo , Síndrome Metabólica/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Hemodinâmica , Humanos , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Mutação , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos Sprague-Dawley , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Remodelação Vascular
7.
Hypertension ; 76(2): 523-532, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32507041

RESUMO

Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.


Assuntos
Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Glucosefosfato Desidrogenase/genética , Fatores de Risco de Doenças Cardíacas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Ratos
8.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499357

RESUMO

Mycobacteriophages Joselito, Patt, and Tydolla were isolated from different soil or water samples using Mycobacterium smegmatis mc2155 as the host. Each was obtained using direct isolation techniques, purified, and then sequenced using the deconvolution of genomes after en masse sequencing (DOGEMS) method.

9.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L773-L786, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159369

RESUMO

Metabolic reprogramming is considered important in the pathogenesis of the occlusive vasculopathy observed in pulmonary hypertension (PH). However, the mechanisms that link reprogrammed metabolism to aberrant expression of genes, which modulate functional phenotypes of cells in PH, remain enigmatic. Herein, we demonstrate that, in mice, hypoxia-induced PH was prevented by glucose-6-phosphate dehydrogenase deficiency (G6PDDef), and further show that established severe PH in Cyp2c44-/- mice was attenuated by knockdown with G6PD shRNA or by G6PD inhibition with an inhibitor (N-ethyl-N'-[(3ß,5α)-17-oxoandrostan-3-yl]urea, NEOU). Mechanistically, G6PDDef, knockdown and inhibition in lungs: 1) reduced hypoxia-induced changes in cytoplasmic and mitochondrial metabolism, 2) increased expression of Tet methylcytosine dioxygenase 2 (Tet2) gene, and 3) upregulated expression of the coding genes and long noncoding (lnc) RNA Pint, which inhibits cell growth, by hypomethylating the promoter flanking region downstream of the transcription start site. These results suggest functional TET2 is required for G6PD inhibition to increase gene expression and to reverse hypoxia-induced PH in mice. Furthermore, the inhibitor of G6PD activity (NEOU) decreased metabolic reprogramming, upregulated TET2 and lncPINT, and inhibited growth of control and diseased smooth muscle cells isolated from pulmonary arteries of normal individuals and idiopathic-PAH patients, respectively. Collectively, these findings demonstrate a previously unrecognized function for G6PD as a regulator of DNA methylation. These findings further suggest that G6PD acts as a link between reprogrammed metabolism and aberrant gene regulation and plays a crucial role in regulating the phenotype of cells implicated in the pathogenesis of PH, a debilitating disorder with a high mortality rate.


Assuntos
Metilação de DNA/genética , Glucosefosfato Desidrogenase/genética , Hipertensão Pulmonar/genética , Hipóxia/genética , Animais , Proliferação de Células/genética , Família 2 do Citocromo P450/genética , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Pulmão/metabolismo , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Artéria Pulmonar/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética
10.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395640

RESUMO

EleanorGeorge, Mattes, and Spikelee are mycobacteriophages isolated from different soil samples using Mycobacterium smegmatis mc2155 as the host. Each was obtained using direct isolation techniques, purified, and then sequenced. Based on sequence similarity, all three belong to the F1 subcluster and are temperate phages.

11.
Nanomaterials (Basel) ; 2(3): 275-285, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28348308

RESUMO

In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD) spectroscopy) and on the surface (using atomic force microscopy (AFM)). Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA