Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 63(4): 633-650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35691996

RESUMO

A good knowledge of the genome properties of the populations makes it possible to optimize breeding methods, in particular genomic selection (GS). In oil palm (Elaeis guineensis Jacq), the world's main source of vegetable oil, this would provide insight into the promising GS results obtained so far. The present study considered two complex breeding populations, Deli and La Mé, with 943 individuals and 7324 single-nucleotide polymorphisms (SNPs) from genotyping-by-sequencing. Linkage disequilibrium (LD), haplotype sharing, effective size (Ne), and fixation index (Fst) were investigated. A genetic linkage map spanning 1778.52 cM and with a recombination rate of 2.85 cM/Mbp was constructed. The LD at r2=0.3, considered the minimum to get reliable GS results, spanned over 1.05 cM/0.22 Mbp in Deli and 0.9 cM/0.21 Mbp in La Mé. The significant degree of differentiation existing between Deli and La Mé was confirmed by the high Fst value (0.53), the pattern of correlation of SNP heterozygosity and allele frequency among populations, and the decrease of persistence of LD and of haplotype sharing among populations with increasing SNP distance. However, the level of resemblance between the two populations over short genomic distances (correlation of r values between populations >0.6 for SNPs separated by <0.5 cM/1 kbp and percentage of common haplotypes >40% for haplotypes <3600 bp/0.20 cM) likely explains the superiority of GS models ignoring the parental origin of marker alleles over models taking this information into account. The two populations had low Ne (<5). Population-specific genetic maps and reference genomes are recommended for future studies.


Assuntos
Arecaceae , Melhoramento Vegetal , Alelos , Arecaceae/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
2.
Mol Genet Genomics ; 297(2): 523-533, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166935

RESUMO

Genomic selection (GS) is a method of marker-assisted selection revolutionizing crop improvement, but it can still be optimized. For hybrid breeding between heterozygote parents of different populations or species, specific aspects can be considered to increase GS accuracy: (1) training population genotyping, i.e., only genotyping the hybrid parents or also a sample of hybrid individuals, and (2) marker effects modeling, i.e., using population-specific effects of single nucleotide polymorphism alleles model (PSAM) or across-population SNP genotype model (ASGM). Here, this was investigated empirically for the prediction of the performances of oil palm hybrids for yield traits. The GS model was trained on 352 hybrid crosses and validated on 213 independent hybrid crosses. The training and validation hybrid parents and 399 training hybrid individuals were genotyping by sequencing. Despite the small proportion of hybrid individuals genotyped and low parental heterozygosity, GS prediction accuracy increased on average by 5% (range 1.4-31.3%, depending on trait and model) when training was done using genomic data on hybrids and parents compared with only parental genomic data. With ASGM, GS prediction accuracy increased on average by 3% (- 10.2 to 40%, depending on trait and genotyping strategy) compared with PSAM. We conclude that the best GS strategy for oil palm is to aggregate genomic data of parents and hybrid individuals and to ignore the parental origin of marker alleles (ASGM). To gain a better insight into these results, future studies should examine the respective effect of capturing genetic variability within crosses and taking segregation distortion into account when genotyping hybrid individuals, and investigate the factors controlling the relative performances of ASGM and PSAM in hybrid crops.


Assuntos
Arecaceae , Melhoramento Vegetal , Arecaceae/genética , Genômica , Genótipo , Heterozigoto , Humanos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
3.
Food Chem ; 365: 130638, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329876

RESUMO

Crude palm oil (CPO) is extracted from the mesocarp of oil palm (Elaeis guineensis) fruits. CPO is widely consumed in many African countries. Due to its high provitamin A carotenoid content, it is also widely used in programmes designed to prevent vitamin A deficiency. Elaeis guineensis occurs naturally across a wide geographical range in Africa. We investigated the carotene, tocochromanol (vitamin E) and fatty acid composition of a large set of genotypes representative of this genetic and geographic diversity. We found considerable intraspecific diversity in most lipid traits. Populations from Côte d'Ivoire were distinguished from other origins by their very low palmitate content and high tocochromanol content. Genotypes from Benin, Côte d'Ivoire and Nigeria were characterized by high carotene contents. Finally, hybrids of crosses between genotypes from Côte d'Ivoire and Nigeria produce CPO with exceptionally high provitamin A and vitamin E contents together with low palmitate content.


Assuntos
Arecaceae , Petróleo , Arecaceae/genética , Carotenoides , Ácidos Graxos , Nigéria , Óleo de Palmeira
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883279

RESUMO

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.


Assuntos
Angelica/genética , Citrus paradisi/genética , Evolução Molecular , Furocumarinas/biossíntese , Proteínas de Plantas/genética , Prenilação , Angelica/metabolismo , Citrus paradisi/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
5.
Mol Breed ; 41(9): 53, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309398

RESUMO

Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in Southeast Asia, which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of resistant planting material as part of an integrated pest management of this disease is one sustainable solution. However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit from marker-assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL mapping approach applied to more than 10 years' worth of data collected during pre-nursery tests revealed the quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between pre-nursery and field environments, information was collected on the disease status of the genitors planted in genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave the way for a MAS of Ganoderma resistant and high yielding planting material, and the provided proof-of-concept of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01246-9.

6.
Cell Host Microbe ; 28(6): 813-824.e6, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33053377

RESUMO

HeLo domain-containing mixed lineage kinase domain-like protein (MLKL), a pseudokinase, mediates necroptotic cell death in animals. Here, we report the discovery of a conserved protein family across seed plants that structurally resembles vertebrate MLKL. The Arabidopsis genome encodes three MLKLs (AtMLKLs) with overlapping functions in disease resistance mediated by Toll-interleukin 1-receptor domain intracellular immune receptors (TNLs). The HeLo domain of AtMLKLs confers cell death activity but is dispensable for immunity. Cryo-EM structures reveal a tetrameric configuration, in which the HeLo domain is buried, suggestive of an auto-repressed complex. The mobility of AtMLKL1 along microtubules is reduced by chitin, a fungal immunity-triggering molecule. An AtMLKL1 phosphomimetic variant exhibiting reduced mobility enhances immunity. Coupled with the predicted presence of HeLo domains in plant helper NLRs, our data reveal the importance of HeLo domain proteins for TNL-dependent immunity and argue for a cell death-independent immune mechanism mediated by MLKLs.


Assuntos
Arabidopsis/fisiologia , Resistência à Doença , Proteínas NLR/fisiologia , Imunidade Vegetal , Domínios Proteicos , Proteínas Quinases/fisiologia , ADP-Ribosil Ciclase/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Arabidopsis/fisiologia , Morte Celular , Microscopia Crioeletrônica , Genoma de Planta , Mutação , Necroptose , Necrose , Proteínas de Plantas/fisiologia , Conformação Proteica , Multimerização Proteica , Transdução de Sinais
7.
Plant Sci ; 299: 110547, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900451

RESUMO

The prediction of clonal genetic value for yield is challenging in oil palm (Elaeis guineensis Jacq.). Currently, clonal selection involves two stages of phenotypic selection (PS): ortet preselection on traits with sufficient heritability among a small number of individuals in the best crosses in progeny tests, and final selection on performance in clonal trials. The present study evaluated the efficiency of genomic selection (GS) for clonal selection. The training set comprised almost 300 Deli × La Mé crosses phenotyped for eight palm oil yield components and the validation set 42 Deli × La Mé ortets. Genotyping-by-sequencing (GBS) revealed 15,054 single nucleotide polymorphisms (SNP). The effects of the SNP dataset (density and percentage of missing data) and two GS modeling approaches, ignoring (ASGM) and considering (PSAM) the parental origin of alleles, were assessed. The results showed prediction accuracies ranging from 0.08 to 0.70 for ortet candidates without data records, depending on trait, SNP dataset and modeling. ASGM was better (on average slightly more accurate, less sensitive to SNP dataset and simpler), although PSAM appeared interesting for a few traits. With ASGM, the number of SNPs had to reach 7,000, while the percentage of missing data per SNP was of secondary importance, and GS prediction accuracies were higher than those of PS for most of the traits. Finally, this makes possible two practical applications of GS, that will increase genetic progress by improving ortet preselection before clonal trials: (1) preselection at the mature stage on all yield components jointly using ortet genotypes and phenotypes, and (2) genomic preselection on more yield components than PS, among a large population of the best possible crosses at nursery stage.


Assuntos
Arecaceae/genética , Genoma de Planta , Hibridização Genética , Melhoramento Vegetal , Seleção Genética , Genômica
8.
New Phytol ; 217(4): 1667-1680, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226970

RESUMO

Pattern recognition receptors (PRRs) and nucleotide-binding domain and leucine-rich repeat (LRR)-containing proteins (NLRs) initiate pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively, each associated with the activation of an overlapping set of defence genes. The regulatory mechanism behind this convergence of PTI- and ETI-mediated defence gene induction remains elusive. We generated transgenic Arabidopsis plants that enable conditional NLR activation without pathogen infection to dissect NLR- and PRR-mediated transcriptional signals. A comparative analysis of over 40 transcriptome datasets linked calmodulin-binding transcription activators (CAMTAs) to the activation of overlapping defence genes in PTI and ETI. We used a dominant camta3 mutant (camta3-D) to assess CAMTA functions in the corresponding transcriptional regulation. Transcriptional regulation by NLRs, although highly similar to PTI responses, can be established independently of pathogen-associated molecular pattern (PAMP) perception, defence phytohormones and host cell death. Conditional expression of the N-terminal coiled-coil domain of the barley MLA (Mildew resistance locus A) NLR is sufficient to trigger similar transcriptional reprogramming as full-length NLRs. CAMTA-binding motifs are overrepresented in the 5' regulatory regions of the identified primary immune response genes, consistent with their altered expression and disease resistance responses in camta3-D plants. We propose that CAMTA-mediated transcriptional regulation defines an early convergence point in NLR- and PRR-mediated signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes Dominantes , Espaço Intracelular/metabolismo , Mutação/genética , Receptores Imunológicos/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
9.
Front Immunol ; 4: 297, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24093022

RESUMO

In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA