Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 357: 264-273, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015293

RESUMO

Respiratory viruses including the respiratory syncytial virus (RSV) aggravate the global burden of virus-inflicted morbidity and mortality. Entry inhibitors are a promising class of antiviral drugs for combating these viruses, as they can prevent infection at the site of viral entry, i.e., the respiratory tract. Here we used a broad-spectrum entry inhibitor, composed of a ß-cyclodextrin backbone, functionalized with 11-mercapto-1-undecanesulfonate (CD-MUS) that is capable of neutralizing a variety of viruses that employ heparan sulfate proteoglycans (HSPG) to infect host cells. CD-MUS inactivates viral particles irreversibly by binding to viral attachment proteins through a multivalent binding mechanism. In the present study, we show that CD-MUS is well tolerated when administered to the respiratory tract of mice. Based on this, we developed an inhalable spray-dried powder formulation that fits the size requirements for lung deposition and disperses well upon use with the Cyclops dry powder inhaler (DPI). Using an in vitro dose-response assay, we show that the compound retained its activity against RSV after the spray drying process. Our study sets the stage for further in vivo studies, exploring the efficacy of pulmonary administered CD-MUS in animal models of RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Animais , Vírus Sinciciais Respiratórios/metabolismo , Pós/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Administração por Inalação , Proteínas Virais/metabolismo , Inaladores de Pó Seco
2.
Bioconjug Chem ; 29(4): 1131-1140, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29465986

RESUMO

The development of synthetic nanomaterials that could embed within, penetrate, or induce fusion between membranes without permanent disruption would have great significance for biomedical applications. Here we describe structure-function relationships of highly water-soluble gold nanoparticles comprised of an ∼1.5-5 nm diameter metal core coated by an amphiphilic organic ligand shell, which exhibit membrane embedding and fusion activity mediated by the surface ligands. Using an environment-sensitive dye anchored within the ligand shell as a sensor of membrane embedding, we demonstrate that particles with core sizes of ∼2-3 nm are capable of embedding within and penetrating fluid bilayers. At the nanoscale, these particles also promote spontaneous fusion of liposomes or spontaneously embed within intact liposomal vesicles. These studies provide nanoparticle design and selection principles that could be used in drug delivery applications, as membrane stains, or for the creation of novel organic/inorganic nanomaterial self-assemblies.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Nanopartículas/química , Permeabilidade , Compostos de Boro/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Lipossomos , Tamanho da Partícula , Eletricidade Estática , Relação Estrutura-Atividade
4.
Bioconjug Chem ; 28(1): 161-170, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28095682

RESUMO

Nanoparticle-based magnetic resonance imaging T2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r2/r1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas , Divisão Celular , Ouro/química , Ferro/química , Magnetismo , Microscopia Eletrônica de Transmissão , Difração de Pó
5.
ACS Nano ; 7(2): 932-42, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23267695

RESUMO

Understanding as well as rapidly screening the interaction of nanoparticles with cell membranes is of central importance for biological applications such as drug and gene delivery. Recently, we have shown that "striped" mixed-monolayer-coated gold nanoparticles spontaneously penetrate a variety of cell membranes through a passive pathway. Here, we report an electrical approach to screen and readily quantify the interaction between nanoparticles and bilayer lipid membranes. Membrane adsorption is monitored through the capacitive increase of suspended planar lipid membranes upon fusion with nanoparticles. We adopt a Langmuir isotherm model to characterize the adsorption of nanoparticles by bilayer lipid membranes and extract the partition coefficient, K, and the standard free energy gain by this spontaneous process, for a variety of sizes of cell-membrane-penetrating nanoparticles. We believe that the method presented here will be a useful qualitative and quantitative tool to determine nanoparticle interaction with lipid bilayers and consequently with cell membranes.


Assuntos
Eletroquímica/métodos , Bicamadas Lipídicas/química , Nanopartículas/química , Adsorção , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA