Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 38: 101788, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321464

RESUMO

Emerging evidence suggests that redox-active chemicals perturb pancreatic islet development. To better understand potential mechanisms for this, we used zebrafish (Danio rerio) embryos to investigate roles of glutathione (GSH; predominant cellular redox buffer) and the transcription factor Nrf2a (Nfe2l2a; zebrafish Nrf2 co-ortholog) in islet morphogenesis. We delineated critical windows of susceptibility to redox disruption of ß-cell morphogenesis, interrogating embryos at 24, 48 and 72 h post fertilization (hpf) and visualized Nrf2a expression in the pancreas using whole-mount immunohistochemistry at 96 hpf. Chemical GSH modulation at 48 hpf induced significant islet morphology changes at 96 hpf. Pro-oxidant exposures to tert-butylhydroperoxide (77.6 µM; 10-min at 48 hpf) or tert-butylhydroquinone (1 µM; 48-56 hpf) decreased ß-cell cluster area at 96 hpf. Conversely, exposures to antioxidant N-acetylcysteine (bolsters GSH pools; 100 µM; 48-72 hpf) or sulforaphane (activates Nrf2a; 20 µM; 48-72 hpf) significantly increased islet areas. Nrf2a was also stabilized in ß-cells: 10-min exposures to 77.6 µM tert-butylhydroperoxide significantly increased Nrf2a protein compared to control islet cells that largely lack stabilized Nrf2a; 10-min exposures to higher (776 µM) tert-butylhydroperoxide concentration stabilized Nrf2a throughout the pancreas. Using biotinylated-GSH to visualize in situ protein glutathionylation, islet cells displayed high protein glutathionylation, indicating oxidized GSH pools. The 10-min high (776 µM) tert-butylhydroperoxide exposure (induced Nrf2a globally) decreased global protein glutathionylation at 96 hpf. Mutant fish expressing inactive Nrf2a were protected against tert-butylhydroperoxide-induced abnormal islet morphology. Our data indicate that disrupted redox homeostasis and Nrf2a stabilization during pancreatic ß-cell development impact morphogenesis, with implications for disease states at later life stages. Our work identifies a potential molecular target (Nrf2) that mediates abnormal ß-cell morphology in response to redox disruptions. Moreover, our findings imply that developmental exposure to exogenous stressors at distinct windows of susceptibility could diminish the reserve redox capacity of ß-cells, rendering them vulnerable to later-life stresses and disease.


Assuntos
Glutationa , Peixe-Zebra , Animais , Embrião não Mamífero , Organogênese , Compostos de Sulfidrila , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
J Dev Orig Health Dis ; 12(1): 132-140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32063256

RESUMO

Mono-2-ethylhexyl phthalate (MEHP) is the primary metabolite of the ubiquitous plasticizer and toxicant, di-2-ethylhexyl phthalate. MEHP exposure has been linked to abnormal development, increased oxidative stress, and metabolic syndrome in vertebrates. Nuclear factor, Erythroid 2 Like 2 (Nrf2), is a transcription factor that regulates gene expression in response to oxidative stress. We investigated the role of Nrf2a in larval steatosis following embryonic exposure to MEHP. Wild-type and nrf2a mutant (m) zebrafish embryos were exposed to 0 or 200 µg/l MEHP from 6 to either 96 (histology) or 120 hours post fertilization (hpf). At 120 hpf, exposures were ceased and fish were maintained in clean conditions until 15 days post fertilization (dpf). At 15 dpf, fish lengths and lipid content were examined, and the expression of genes involved in the antioxidant response and lipid processing was quantified. At 96 hpf, a subset of animals treated with MEHP had vacuolization in the liver. At 15 dpf, deficient Nrf2a signaling attenuated fish length by 7.7%. MEHP exposure increased hepatic steatosis and increased expression of peroxisome proliferator-activated receptor alpha target fabp1a1. Cumulatively, these data indicate that developmental exposure alone to MEHP may increase risk for hepatic steatosis and that Nrf2a does not play a major role in this phenotype.


Assuntos
Dietilexilftalato/análogos & derivados , Fígado Gorduroso/induzido quimicamente , Exposição Materna/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Dietilexilftalato/toxicidade , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mutação com Perda de Função , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética
3.
Aquat Toxicol ; 198: 92-102, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524743

RESUMO

The glutathione redox system undergoes precise and dynamic changes during embryonic development, protecting against and mitigating oxidative insults. The antioxidant response is coordinately largely by the transcription factor Nuclear factor erythroid-2 (Nrf2), an endogenous sensor for cellular oxidative stress. We have previously demonstrated that impaired Nrf family signaling disrupts the glutathione redox system in the zebrafish embryo, and that impaired Nrf2 function increases embryonic sensitivity to environmental toxicants. Here, we investigated the persistent environmental toxicant and reported pro-oxidant perfluorooctanesulfonic acid (PFOS), and its impact on the embryonic glutathione-mediated redox environment. We further examined whether impaired Nrf2a function exacerbates PFOS-induced oxidative stress and embryotoxicity in the zebrafish, and the potential for Nrf2-PPAR crosstalk in the embryonic adaptive response. Wild-type and nrf2afh318-/- mutant embryos were exposed daily to 0 (0.01% v/v DMSO), 16, 32, or 64 µM PFOS beginning at 3 h post fertilization (hpf). Embryonic glutathione and cysteine redox environments were examined at 72 hpf. Gross embryonic toxicity, antioxidant gene expression, and apoptosis were examined at 96 hpf. Mortality, pericardial edema, and yolk sac utilization were increased in wild-type embryos exposed to PFOS. Embryonic glutathione and cysteine redox couples and gene expression of Nrf2 pathway targets were modulated by both exposure and genotype. Apoptosis was increased in PFOS-exposed wild-type embryos, though not in nrf2a mutants. In silico examination of putative transcription factor binding site suggested potential crosstalk between Nrf2 and PPAR signaling, since expression of PPARs and gene targets was modulated by both PFOS exposure and Nrf2a genotype. Overall, this work demonstrates that nrf2a modulates the embryonic response to PFOS, and that PPAR signaling may play a role in the embryonic adaptive response to PFOS.


Assuntos
Ácidos Alcanossulfônicos , Antioxidantes , Embrião não Mamífero , Fluorocarbonos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Ácidos Alcanossulfônicos/toxicidade , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Cisteína/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Fluorocarbonos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2 , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Chemosphere ; 195: 498-507, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277029

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) is the bioactive metabolite of di(2-ethylhexyl) phthalate, a plasticizing agent and persistent environmental contaminant associated with obesity, developmental abnormalities, and oxidative stress. Nrf2 (Nfe2l2) is a transcription factor that regulates cytoprotective genes as part of the adaptive antioxidant response. We previously identified the pancreas as a sensitive target of oxidative stress during embryonic development. The goals of this study were to 1) characterize the effects of MEHP exposure on pancreatic development, and 2) determine whether oxidative stress contributes to MEHP embryotoxicity. Zebrafish (Danio rerio) embryos from AB wildtype and Tg(ins:GFP;nrf2afh318/fh318) were exposed to 0 or 200 µg/L MEHP at 3 h post fertilization (hpf) through 168 hpf to assess pancreatic organogenesis. MEHP exposure significantly decreased ß-cell area at all timepoints (48, 72, 96, 168 hpf), but Nrf2a did not significantly protect against islet hypomorphism. Tg(gcga:GFP) embryos exposed to MEHP showed a decrease in α-cell area in the islet across the same timepoints. Tg(ptf1a:GFP) embryos were assessed at 80 and 168 hpf for exocrine pancreas length. MEHP exposure decreased growth of the exocrine pancreas. Expression of pancreas genes insa, sst2 and ptf1a was significantly reduced by MEHP exposure compared to controls. Glutathione (GSH) concentrations and redox potentials were quantified at 72 hpf by HPLC, but no significant changes were observed. However, expression of the GSH-related genes gstp1 and gsr were significantly altered by MEHP exposure. These data indicate that the developing pancreas is a sensitive target tissue of embryonic exposure to MEHP.


Assuntos
Dietilexilftalato/análogos & derivados , Desenvolvimento Embrionário/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Pâncreas/embriologia , Peixe-Zebra/embriologia , Animais , Dietilexilftalato/toxicidade , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo , Plastificantes/toxicidade
5.
Environ Pollut ; 220(Pt B): 807-817, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810111

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a ubiquitous environmental contaminant, previously utilized as a non-stick application for consumer products and firefighting foam. It can cross the placenta, and has been repeatedly associated with increased risk for diabetes in epidemiological studies. Here, we sought to establish the hazard posed by embryonic PFOS exposures on the developing pancreas in a model vertebrate embryo, and develop criteria for an adverse outcome pathway (AOP) framework to study the developmental origins of metabolic dysfunction. Zebrafish (Danio rerio) embryos were exposed to 16, 32, or 64 µM PFOS beginning at the mid-blastula transition. We assessed embryo health, size, and islet morphology in Tg(insulin-GFP) embryos at 48, 96 and 168 hpf, and pancreas length in Tg(ptf1a-GFP) embryos at 96 and 168 hpf. QPCR was used to measure gene expression of endocrine and exocrine hormones, digestive peptides, and transcription factors to determine whether these could be used as a predictive measure in an AOP. Embryos exposed to PFOS showed anomalous islet morphology and decreased islet size and pancreas length in a U-shaped dose-response curve, which resemble congenital defects associated with increased risk for diabetes in humans. Expression of genes encoding islet hormones and exocrine digestive peptides followed a similar pattern, as did total larval growth. Our results demonstrate that embryonic PFOS exposures can disrupt pancreatic organogenesis in ways that mimic human congenital defects known to predispose individuals to diabetes; however, future study of the association between these defects and metabolic dysfunction are needed to establish an improved AOP framework.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Organogênese/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/crescimento & desenvolvimento , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Animais
6.
Toxics ; 4(3)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28393070

RESUMO

The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2-12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3-48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3-48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA