Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 56(Pt 3): 633-642, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284252

RESUMO

The high-intensity time-of-flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world-wide 3He crisis in 2009, the authors promptly initiated the development of 3He-free detector alternatives that are tailor-made for the requirements of large-area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular- and wavelength-dependent data from the POWTEX detector, unfortunately damaged by a 50g shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the PowderReduceP2D algorithm implemented in Mantid [Arnold et al. (2014). Nucl. Instrum. Methods Phys. Res. A, 764, 156-166]. The final part of the data treatment chain, namely a novel multi-dimensional refinement using a modified version of the GSAS-II software suite [Toby & Von Dreele (2013). J. Appl. Cryst.46, 544-549], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of GSAS-II. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly-user sample, BaZn(NCN)2. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi-dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the a and b lattice parameters of BaZn(NCN)2 crystallizing in Pbca as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, e.g. the two N-C-N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large-area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.

2.
ACS Appl Mater Interfaces ; 15(17): 21699-21718, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083334

RESUMO

Aseptic loosening and periprosthetic infections are complications that can occur at the interface between inert ceramic implants and natural body tissues. Therefore, the need for novel materials with antibacterial properties to prevent implant-related infection is evident. This study proposes multifunctionalizing the inert ceramic implant surface by biomimetic calcium phosphate (CaP) coating decorated with antibiotic-loaded nanoparticles for bioactivity enhancement and antibacterial effect. This study aimed to coat zirconium dioxide (ZrO2) substrates with a bioactive CaP-layer containing drug-loaded degradable polymer nanoparticles (NPs). The NPs were loaded with two antibiotics, gentamicin or bacitracin. The immobilization of NPs happened by two deposition methods: coprecipitation and drop-casting. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cross-section analyses were used to characterize the coatings. MG-63 osteoblast-like cells and human mesenchymal stem cells (hMSC) were chosen for in vitro tests. Antibacterial activity was assessed with S. aureus and E. coli. The coprecipitation method allowed for a favorable homogeneous distribution of the NPs within the CaP coating. The CaP coating was constituted of hydroxyapatite and octacalcium phosphate; its thickness was 3.8 ± 1 µm with cavities of around 1 µm suitable for hosting NPs with a size of 200 nm. Antibiotics were released from the coatings in a controlled manner for 1 month. The cell culture study has confirmed the excellent behavior of the coprecipitated coating, showing cytocompatibility and a homogeneous distribution of the cells on the coated surfaces. The increase in alkaline phosphatase activity showed osteogenic differentiation. The materials were found to inhibit the growth of bacteria. Newly developed coatings with antibacterial and bioactive properties are promising candidates to prevent peri-implant infectious bone diseases.


Assuntos
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese , Staphylococcus aureus , Biomimética , Escherichia coli , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cerâmica/farmacologia , Propriedades de Superfície , Titânio/química
3.
J Appl Crystallogr ; 50(Pt 3): 866-875, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28656041

RESUMO

The method of angular- and wavelength-dispersive (e.g. two-dimensional) Rietveld refinement is a new and emerging tool for the analysis of neutron diffraction data measured at time-of-flight instruments with large area detectors. Following the approach for one-dimensional refinements (using either scattering angle or time of flight), the first step at each beam time cycle is the calibration of the instrument including the determination of instrumental contributions to the peak shape variation to be expected for diffraction patterns measured by the users. The aim of this work is to provide the users with calibration files and - for the later Rietveld refinement of the measured data - with an instrumental resolution file (IRF). This article will elaborate on the necessary steps to generate such an IRF for the angular- and wavelength-dispersive case, exemplified for the POWGEN instrument. A dataset measured on a standard diamond sample is used to extract the profile function in the two-dimensional case. It is found that the variation of reflection width with 2θ and λ can be expressed by the standard equation used for evaluating the instrumental resolution, which yields a substantially more fundamental approach to the parameterization of the instrumental contribution to the peak shape. Geometrical considerations of the POWGEN instrument and sample effects lead to values for Δθ, Δt and ΔL that yield a very good match to the extracted FWHM values. In a final step the refinement results are compared with the one-dimensional, i.e. diffraction-focused, case.

4.
J Phys Condens Matter ; 29(23): 235701, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28430106

RESUMO

We explore the thermodynamic properties of the layered copper(II) carbodiimide CuNCN by heat-capacity measurements and investigate the corresponding thermal atomic motions by means of neutron powder diffraction as well as inelastic neutron scattering. The experiments are complemented by a combination of density-functional calculations, phonon analysis and analytic theory. The existence of a soft flexural mode-bending of the layers, characteristic for the material structure-is established in the phonon spectrum of CuNCN by giving characteristic temperature-dependent contributions to the heat capacity and atomic displacement parameters. The agreement with the neutron data allows us to extract a residual-on top of the lattice-presumably spinon contribution to the heat capacity [Formula: see text], speaking in favor of the spin-liquid picture of the electronic phases of CuNCN.

5.
Inorg Chem ; 55(12): 6161-8, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27248288

RESUMO

We report the oxidation-controlled synthesis of the ytterbium amides Yb(NH2)2 and Yb(NH2)3 and the first rare-earth-metal guanidinates YbC(NH)3 and Yb(CN3H4)3 from liquid ammonia. For Yb(NH2)2, we present experimental atomic displacement parameters from powder X-ray diffraction (PXRD) and density functional theory (DFT)-derived hydrogen positions for the first time. For Yb(NH2)3, the indexing proposal based on PXRD arrives at R3̅, a = 6.2477(2) Å, c = 17.132(1) Å, V = 579.15(4) Å(3), and Z = 6. The oxidation-controlled synthesis was also applied to make the first rare-earth guanidinates, namely, the doubly deprotonated YbC(NH)3 and the singly deprotonated Yb(CN3H4)3. YbC(NH)3 is isostructural with SrC(NH)3, as derived from PXRD (P63/m, a = 5.2596(2) Å, c = 6.6704(2) Å, V = 159.81(1) Å(3), and Z = 2). Yb(CN3H4)3 crystallizes in a structure derived from the [ReO3] type, as studied by powder neutron diffraction (Pn3̅, a = 13.5307(3) Å, V = 2477.22(8) Å(3), and Z = 8 at 10 K). Electrostatic and hydrogen-bonding interactions cooperate to stabilize the structure with wide and empty channels. The IR spectra of the guanidinates are compared with DFT-calculated phonon spectra to identify the vibrational modes. SQUID magnetometry shows that Yb(CN3H4)3 is a paramagnet with isolated Yb(3+) (4f(13)) ions. A CONDON 2.0 fit was used to extract all relevant parameters.

6.
J Appl Crystallogr ; 48(Pt 6): 1627-1636, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26664340

RESUMO

This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages.

7.
J Chem Phys ; 139(22): 224707, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24329082

RESUMO

Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ~100 K after which it rises again. The same trend-albeit more pronounced-is observed for the c lattice parameter at ~35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) state to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.

8.
Biotechnol Bioeng ; 99(1): 244-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17614330

RESUMO

The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. In this report, we demonstrate the use of an infrared (1,064 nm) picosecond laser for the perforation of tobacco cell protoplasts. A single pulse was sufficient to perforate the plasma membrane enabling the uptake of dye from the surrounding medium into the cytosol. Moreover, the procedure was shown to be suitable for the efficient delivery of DNA expression constructs to the nucleus, as demonstrated by the subsequent expression and correct targeting of a recombinant fluorescent protein. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.


Assuntos
Permeabilidade da Membrana Celular/efeitos da radiação , Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Eletroporação/métodos , Lasers , Nicotiana/fisiologia , Nicotiana/efeitos da radiação , Células Cultivadas , Raios Infravermelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA