Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472406

RESUMO

Several RNA binding proteins involved in membraneless organelles can form pathological amyloids associated with neurodegenerative diseases, but the mechanisms of how this aggregation is modulated remain elusive. Here we investigate how heterotypic protein-RNA interactions modulate the condensation and the liquid to amyloid transition of hnRNPA1A, a protein involved in amyothropic lateral sclerosis. In the absence of RNA, formation of condensates promotes hnRNPA1A aggregation and fibrils are localized at the interface of the condensates. Addition of RNA modulates the soluble to amyloid transition of hnRNPA1A according to different pathways depending on RNA/protein stoichiometry. At low RNA concentrations, RNA promotes both condensation and amyloid formation, and the catalytic effect of RNA adds to the role of the interface between the dense and dilute phases. At higher RNA concentrations, condensation is suppressed according to re-entrant phase behaviour but formation of hnRNPA1A amyloids is observed over longer incubation times. Our findings show how heterotypic nucleic acid-protein interactions affect the kinetics and molecular pathways of amyloid formation.

2.
Nat Commun ; 14(1): 653, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746944

RESUMO

The detection of proteins is of central importance to biomolecular analysis and diagnostics. Typical immunosensing assays rely on surface-capture of target molecules, but this constraint can limit specificity, sensitivity, and the ability to obtain information beyond simple concentration measurements. Here we present a surface-free, single-molecule microfluidic sensing platform for direct digital protein biomarker detection in solution, termed digital immunosensor assay (DigitISA). DigitISA is based on microchip electrophoretic separation combined with single-molecule detection and enables absolute number/concentration quantification of proteins in a single, solution-phase step. Applying DigitISA to a range of targets including amyloid aggregates, exosomes, and biomolecular condensates, we demonstrate that the assay provides information beyond stoichiometric interactions, and enables characterization of immunochemistry, binding affinity, and protein biomarker abundance. Taken together, our results suggest a experimental paradigm for the sensing of protein biomarkers, which enables analyses of targets that are challenging to address using conventional immunosensing approaches.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Imunoensaio , Biomarcadores/análise , Amiloide , Microfluídica/métodos
3.
Nano Lett ; 23(5): 1629-1636, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826991

RESUMO

An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle's size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.

4.
iScience ; 26(2): 105928, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36619367

RESUMO

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

5.
J Phys Chem B ; 126(44): 8913-8920, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306420

RESUMO

Living systems are characterized by their spatially highly inhomogeneous nature which is susceptible to modify fundamentally the behavior of biomolecular species, including the proteins that underpin biological functionality in cells. Spatial gradients in chemical potential are known to lead to strong transport effects for colloidal particles, but their effect on molecular scale species such as proteins has remained largely unexplored. Here, we improve on existing diffusiophoresis microfluidic technique to measure protein diffusiophoresis in real space. The measurement of proteins is made possible by two ameliorations. First, a label-free microscope is used to suppress label interference. Second, improvements in numerical methods are developed to meet the particular challenges posed by small molecules. We demonstrate that individual proteins can undergo strong diffusiophoretic motion in salt gradients in a manner which is sufficient to overcome diffusion and which leads to dramatic changes in their spatial organization on the scale of a cell. Moreover, we demonstrate that this phenomenon can be used to control the motion of proteins in microfluidic devices. These results open up a path towards a physical understanding of the role of gradients in living systems in the spatial organization of macromolecules and highlight novel routes towards protein sorting applications on device.


Assuntos
Cloreto de Sódio , Difusão , Movimento (Física) , Substâncias Macromoleculares
6.
Small ; 16(32): e2000432, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32529798

RESUMO

3D scaffolds in the form of hydrogels and microgels have allowed for more native cell-culture systems to be developed relative to flat substrates. Native biological tissues are, however, usually spatially inhomogeneous and anisotropic, but regulating the spatial density of hydrogels at the microscale to mimic this inhomogeneity has been challenging to achieve. Moreover, the development of biocompatible synthesis approaches for protein-based microgels remains challenging, and typical gelation conditions include UV light, extreme pH, extreme temperature, or organic solvents, factors which can compromise the viability of cells. This study addresses these challenges by demonstrating an approach to fabricate protein microgels with controllable radial density through microfluidic mixing and physical and enzymatic crosslinking of gelatin precursor molecules. Microgels with a higher density in their cores and microgels with a higher density in their shells are demonstrated. The microgels have robust stability at 37 °C and different dissolution rates through enzymolysis, which can be further used for gradient scaffolds for 3D cell culture, enabling controlled degradability, and the release of biomolecules. The design principles of the microgels could also be exploited to generate other soft materials for applications ranging from novel protein-only micro reactors to soft robots.


Assuntos
Microfluídica , Microgéis , Técnicas de Cultura de Células , Gelatina , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA