Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1243863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842081

RESUMO

The single cell RNA sequencing technique has been particularly used during the last years, allowing major discoveries. However, the widespread application of this analysis has showed limitations. Indeed, the direct study of fresh tissues is not always feasible, notably in the case of genetically engineered mouse embryo or sensitive tissues whose integrity is affected by classical digestion methods. To overcome these limitations, single nucleus RNA sequencing offers the possibility to work with frozen samples. Thus, single nucleus RNA sequencing can be performed after genotyping-based selection on samples stocked in tissue bank and is applicable to retrospective studies. Therefore, this technique opens the field to a wide range of applications requiring adapted protocols for nucleus isolation according to the tissue considered. Here we developed a protocol of nucleus isolation from frozen murine placenta and pancreas. These two complex tissues were submitted to a combination of enzymatic and manual dissociation before undergoing different steps of washing and centrifugation. The entire protocol was performed with products usually present in a research lab. Before starting the sequencing process, nuclei were sorted by flow cytometry. The results obtained validate the efficiency of this protocol which is easy to set up and does not require the use of commercial kits. This specificity makes it adaptable to different organs and species. The association of this protocol with single nucleus RNA sequencing allows the study of complex samples that resist classical lysis methods due to the presence of fibrotic or fatty tissue, such as fibrotic kidney, tumors, embryonic tissues or fatty pancreas.

2.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497580

RESUMO

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Assuntos
Orientação de Axônios , Artéria Hepática , Animais , Camundongos , Ductos Biliares , Morfogênese , Inativação Gênica
3.
Front Cell Dev Biol ; 10: 995013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238685

RESUMO

KRAS mutants are common in many cancers and wild-type KRAS is essential in development as its absence causes embryonic lethality. Despite this critical role in development and disease, the normal expression pattern of KRAS protein is still largely unknown at the tissue level due to the lack of valid antibodies. To address this issue, we used the citrine-Kras mouse model in which the Citrine-KRAS (Cit-K) fusion protein functions as a validated surrogate of endogenous KRAS protein that can be detected on tissue sections by immunolabeling with a GFP antibody. In the embryo, we found expression of KRAS protein in a wide range of organs and tissues. This expression tends to decrease near birth, mainly in mesenchymal cells. During transition to the adult stage, the dynamics of KRAS protein expression vary among organs and detection of KRAS becomes restricted to specific cell types. Furthermore, we found that steady state KRAS protein expression is detectable at the cell membrane and in the cytoplasm and that this subcellular partitioning differed among cell types. Our results reveal hitherto unanticipated dynamics in developmental, tissular, cell-specific and subcellular expression of KRAS protein. They provide insight into the reason why specific cell-types are sensitive to KRAS mutations during cancer initiation.

4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947990

RESUMO

KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.


Assuntos
Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Antioxidants (Basel) ; 10(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34356340

RESUMO

Pancreatitis, an inflammation of the pancreas, appears to be a main driver of pancreatic cancer when combined with Kras mutations. In this context, the exact redox mechanisms are not clearly elucidated. Herein, we treated mice expressing a KrasG12D mutation in pancreatic acinar cells with cerulein to induce acute pancreatitis. In the presence of KrasG12D, pancreatitis triggered significantly greater redox unbalance and oxidative damages compared to control mice expressing wild-type Kras alleles. Further analyses identified the disruption in glutathione metabolism as the main redox event occurring during pancreatitis. Compared to the wild-type background, KrasG12D-bearing mice showed a greater responsiveness to treatment with a thiol-containing compound, N-acetylcysteine (NAC). Notably, NAC treatment increased the pancreatic glutathione pool, reduced systemic markers related to pancreatic and liver damages, limited the extent of pancreatic edema and fibrosis as well as reduced systemic and pancreatic oxidative damages. The protective effects of NAC were, at least, partly due to a decrease in the production of tumor necrosis factor-α (TNF-α) by acinar cells, which was concomitant with the inhibition of NF-κB(p65) nuclear translocation. Our data provide a rationale to use thiol-containing compounds as an adjuvant therapy to alleviate the severity of inflammation during pancreatitis and pancreatic tumorigenesis.

6.
Gut ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330784

RESUMO

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

7.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917763

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with few therapeutic options. The identification of new promising targets is, therefore, an urgent need. Using available transcriptomic datasets, we first found that Peroxiredoxin-1 gene (PRDX1) expression was significantly increased in human pancreatic tumors, but not in the other gastrointestinal cancers; its high expression correlated with shortened patient survival. We confirmed by immunostaining on mouse pancreata the increased Peroxiredoxin-I protein (PRX-I) expression in pancreatic neoplastic lesions and PDAC. To question the role of PRX-I in pancreatic cancer, we genetically inactivated its expression in multiple human PDAC cell lines, using siRNA and CRISPR/Cas9. In both strategies, PRX-I ablation led to reduced survival of PDAC cells. This was mainly due to an increase in the production of reactive oxygen species (ROS), accumulation of oxidative DNA damage (i.e., 8-oxoguanine), and cell cycle blockade at G2/M. Finally, we found that PRX-I ablation disrupts the autophagic flux in PDAC cells, which is essential for their survival. This proof-of-concept study supports a pro-oncogenic role for PRX-I in PDAC.

8.
Cell Death Differ ; 28(9): 2601-2615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33762742

RESUMO

Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non-genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in "Pathways of cancer" with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells. During mouse embryonic development, pre-acinar cells also transiently expressed MECOM and in the adult mouse pancreas, MECOM was re-expressed when mice were subjected to acute and chronic pancreatitis, conditions in which acinar cells dedifferentiate. In human cells and in mice, MECOM expression correlated with and was directly regulated by SOX9. Mouse acinar cells that, by genetic manipulation, lose the ability to upregulate MECOM showed impaired cell adhesion, more prominent acinar cell death, and suppressed acinar cell dedifferentiation by limited ERK signaling. In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.


Assuntos
Células Acinares/metabolismo , Morte Celular/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Oncogenes/genética , Animais , Desdiferenciação Celular , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
9.
Hepatology ; 74(3): 1445-1460, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33768568

RESUMO

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Ductal/genética , Colangiocarcinoma/genética , Modelos Animais de Doenças , Neoplasias Hepáticas Experimentais/genética , Camundongos , Tensinas/genética , Animais , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinoma Ductal/induzido quimicamente , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patologia , Carcinoma Papilar/induzido quimicamente , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangite/induzido quimicamente , Colangite/complicações , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/toxicidade , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Tensinas/metabolismo
10.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602788

RESUMO

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Assuntos
Células Acinares/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Proliferação de Células , Modelos Animais de Doenças , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887255

RESUMO

KRAS is a powerful oncogene responsible for the development of many cancers. Despite the great progress in understanding its function during the last decade, the study of KRAS expression, subcellular localization, and post-translational modifications remains technically challenging. Accordingly, many facets of KRAS biology are still unknown. Antibodies could be an effective and easy-to-use tool for in vitro and in vivo research on KRAS. Here, we generated a novel rabbit polyclonal antibody that allows immunolabeling of cells and tissues overexpressing KRAS. Cell transfection experiments with expression vectors for the members of the RAS family revealed a preferential specificity of this antibody for KRAS. In addition, KRAS was sensitively detected in a mouse tissue electroporated with an expression vector. Interestingly, our antibody was able to detect endogenous forms of unprenylated (immature) and prenylated (mature) KRAS in mouse organs. We found that KRAS prenylation was increased ex vivo and in vivo in a model of KRASG12D-driven tumorigenesis, which was concomitant with an induction of expression of essential KRAS prenylation enzymes. Therefore, our tool helped us to put the light on new regulations of KRAS activation during cancer initiation. The use of this tool by the RAS community could contribute to discovering novel aspects of KRAS biology.


Assuntos
Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Prenilação de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Animais , Formação de Anticorpos , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Coelhos , Células Tumorais Cultivadas
12.
Sci Rep ; 10(1): 5241, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251323

RESUMO

Earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) requires better understanding of the mechanisms driving tumorigenesis. In this context, depletion of Epidermal Growth Factor Receptor (EGFR) is known to impair development of PDAC-initiating lesions called acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN). In contrast, the role of v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), the preferred dimerization partner of EGFR, remains poorly understood. Here, using a mouse model with inactivation of Erbb2 in pancreatic acinar cells, we found that Erbb2 is dispensable for inflammation- and KRasG12D-induced development of ADM and PanIN. A mathematical model of EGFR/ERBB2-KRAS signaling, which was calibrated on mouse and human data, supported the observed roles of EGFR and ERBB2. However, this model also predicted that overexpression of ERBB2 stimulates ERBB/KRAS signaling; this prediction was validated experimentally. We conclude that EGFR and ERBB2 differentially impact ERBB signaling during PDAC tumorigenesis, and that the oncogenic potential of ERBB2 is only manifested when it is overexpressed. Therefore, the level of ERBB2, not only its mere presence, needs to be considered when designing therapies targeting ERBB signaling.


Assuntos
Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Neoplasias Pancreáticas/patologia , Receptor ErbB-2/genética , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Mutantes , Camundongos Transgênicos , Modelos Teóricos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/genética
13.
Gut ; 69(4): 704-714, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31154393

RESUMO

OBJECTIVE: Pancreatic cancer can arise from precursor lesions called intraductal papillary mucinous neoplasms (IPMN), which are characterised by cysts containing papillae and mucus-producing cells. The high frequency of KRAS mutations in IPMN and histological analyses suggest that oncogenic KRAS drives IPMN development from pancreatic duct cells. However, induction of Kras mutation in ductal cells is not sufficient to generate IPMN, and formal proof of a ductal origin of IPMN is still missing. Here we explore whether combining oncogenic KrasG12D mutation with an additional gene mutation known to occur in human IPMN can induce IPMN from pancreatic duct cells. DESIGN: We created and phenotyped mouse models in which mutations in Kras and in the tumour suppressor gene liver kinase B1 (Lkb1/Stk11) are conditionally induced in pancreatic ducts using Cre-mediated gene recombination. We also tested the effect of ß-catenin inhibition during formation of the lesions. RESULTS: Activating KrasG12D mutation and Lkb1 inactivation synergised to induce IPMN, mainly of gastric type and with malignant potential. The mouse lesions shared several features with human IPMN. Time course analysis suggested that IPMN developed from intraductal papillae and glandular neoplasms, which both derived from the epithelium lining large pancreatic ducts. ß-catenin was required for the development of glandular neoplasms and subsequent development of the mucinous cells in IPMN. Instead, the lack of ß-catenin did not impede formation of intraductal papillae and their progression to papillary lesions in IPMN. CONCLUSION: Our work demonstrates that IPMN can result from synergy between KrasG12D mutation and inactivation of a tumour suppressor gene. The ductal epithelium can give rise to glandular neoplasms and papillary lesions, which probably both contribute to IPMN formation.


Assuntos
Adenocarcinoma Mucinoso/genética , Mutação/genética , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Quinases Ativadas por AMP , Adenocarcinoma Mucinoso/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Fatores de Tempo
14.
Front Physiol ; 9: 129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535635

RESUMO

The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 µg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.

15.
Gene Expr ; 18(3): 149-155, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-29580319

RESUMO

The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.


Assuntos
Carcinogênese , Carcinoma/etiologia , Neoplasias Hepáticas/etiologia , Fígado/embriologia , Pâncreas/embriologia , Neoplasias Pancreáticas/etiologia , Animais , Linhagem da Célula , Humanos , Fígado/metabolismo , Pâncreas/metabolismo
16.
Anal Biochem ; 500: 60-2, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26896683

RESUMO

Extracting RNA from pancreatic tissue is notoriously challenging because of the organ's high RNase content. Standard methods using TriPure or TRIzol classically yield RNA of sufficient quality for routine gene expression analysis but not for microarray or deep sequencing analysis. Here we developed a simple method to extract high-quality RNA from mouse pancreas. Our method uses an RNase inhibitor and combines different protocols using guanidium thiocyanate-phenol extraction. It enables reproducible isolation of RNA with an RNA integrity number around 9.


Assuntos
Pâncreas/química , RNA Neoplásico/isolamento & purificação , Animais , Humanos , Camundongos
17.
Differentiation ; 91(1-3): 42-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26856660

RESUMO

Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that ß-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when ß-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of ß-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that ß-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling.


Assuntos
Ductos Biliares/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Morfogênese/genética , beta Catenina/genética , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos
19.
Hum Mol Genet ; 25(22): 5017-5026, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159992

RESUMO

Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.


Assuntos
Cílios/patologia , Fator 6 Nuclear de Hepatócito/metabolismo , Pancreatite Crônica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Apoptose/fisiologia , Diferenciação Celular , Cílios/genética , Células Epiteliais/patologia , Fator 6 Nuclear de Hepatócito/genética , Lipomatose/genética , Lipomatose/metabolismo , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Pancreatite Crônica/genética , Proteínas Serina-Treonina Quinases/genética
20.
Dev Biol ; 404(2): 136-48, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26033091

RESUMO

In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-ß, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9.


Assuntos
Ductos Biliares Intra-Hepáticos/embriologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXC/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Hippo , Laminina/metabolismo , Camundongos , Camundongos Knockout , Organogênese/genética , Fosfoproteínas/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Receptores Notch/biossíntese , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOXC/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA