Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(5): 1941-1953, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818068

RESUMO

Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver of the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being >1000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, and some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops and changes to their conformations, as revealed by a suite of crystal structures. This suggests that a specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining the enzyme activity profile.

2.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38724459

RESUMO

The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of the latter being reduced by SsoPox treatment. In fish pathogens, lactonase treatment inhibited biofilm formation and bioluminescence in Vibrio harveyi and affected QS regulation in Aeromonas salmonicida. QS inhibition can thus be used to largely impact the virulence of bacterial pathogens and would constitute a global and sustainable approach for public, crop, and livestock health in line with the expectations of the One Health initiative.


Assuntos
Biofilmes , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Animais , Humanos , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia
3.
J Nat Prod ; 87(4): 1268-1284, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390739

RESUMO

Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Estrutura Molecular , Humanos , Burkholderia/metabolismo , Chromobacterium/efeitos dos fármacos
4.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958742

RESUMO

Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 µM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.


Assuntos
Organofosfatos , Hidrolases de Triester Fosfórico , Animais , Organofosfatos/toxicidade , Paraoxon/toxicidade , Hidrolases de Triester Fosfórico/química , Nanotecnologia
5.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292757

RESUMO

Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver for the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of the lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being > 1,000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, ~1,000,000-fold and beyond, since some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops, as revealed by a suite of crystal structures. This suggests that specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining an enzyme activity profile.

6.
ACS Appl Mater Interfaces ; 14(17): 19241-19252, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35440137

RESUMO

A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 µM). The polyethylene glycol-polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 µM enzyme inactivates 5 µM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50 i.p. in prophylaxis and 3.3 × LD50 i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in prophylaxis and 9.8 × LD50 in post-exposure treatment. Rotarod tests showed that transitory impaired neuromuscular functions of challenged mice were restored the day of experiments. No deterioration was observed in the following days and weeks. The high therapeutic index provided by prophylactic administration of enzyme nanoreactors suggests that no other drugs are needed for protection against acute POX toxicity. For post-exposure treatment, co-administration of classical drugs would certainly have beneficial effects against transient incapacitation.


Assuntos
Intoxicação por Organofosfatos , Hidrolases de Triester Fosfórico , Animais , Camundongos , Nanotecnologia , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/toxicidade , Paraoxon
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360916

RESUMO

Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 min. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m-2 of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.


Assuntos
Descontaminação/métodos , Enzimas/química , Inseticidas/química , Agentes Neurotóxicos/química , Compostos Organofosforados/química
8.
Environ Sci Pollut Res Int ; 28(20): 25081-25106, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-29959732

RESUMO

Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.


Assuntos
Substâncias para a Guerra Química , Intoxicação por Organofosfatos , Praguicidas , Intoxicação , Acetilcolinesterase , Animais , Antídotos , Inibidores da Colinesterase , Compostos Organofosforados
9.
J Biol Chem ; 295(37): 12993-13007, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32690609

RESUMO

Enzymes able to degrade or modify acyl-homoserine lactones (AHLs) have drawn considerable interest for their ability to interfere with the bacterial communication process referred to as quorum sensing. Many proteobacteria use AHL to coordinate virulence and biofilm formation in a cell density-dependent manner; thus, AHL-interfering enzymes constitute new promising antimicrobial candidates. Among these, lactonases and acylases have been particularly studied. These enzymes have been isolated from various bacterial, archaeal, or eukaryotic organisms and have been evaluated for their ability to control several pathogens. Engineering studies on these enzymes were carried out and successfully modulated their capacity to interact with specific AHL, increase their catalytic activity and stability, or enhance their biotechnological potential. In this review, special attention is paid to the screening, engineering, and applications of AHL-modifying enzymes. Prospects and future opportunities are also discussed with a view to developing potent candidates for bacterial control.


Assuntos
Acil-Butirolactonas/metabolismo , Antibacterianos/metabolismo , Bactérias , Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Engenharia Metabólica , Percepção de Quorum , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo
10.
Cell Death Discov ; 5: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149349

RESUMO

Apoptosis is a cell death process generally described as involving a cascade of caspase activation, death receptors and/or pro- and antiapoptotic molecules from the BcL-2 family. But about 20 years ago, a caspase-independent apoptotic pathway has been described. Regarding this pathway, we can learn a lot from Leishmania parasites. Indeed, these parasitic protozoa enter, in response to different stimuli, in a form of cell death phenotypically similar to mammalian apoptosis but without involving caspases or death receptors. So far, only two proteins have been clearly identified as being involved in Leishmania-regulated cell death: the metacaspase and the endonuclease G. We report here the identification of a new protein modeled as a potential hydrolase, highly conserved among Leishmania species and absent in the very close parasite Trypanosoma brucei. This protein is involved in L. major-regulated cell death induced by curcumin, miltefosine and pentamidine, after gene overexpression and/or protein translocation to the nucleus. The identification of proteins involved in Leishmania-regulated cell death will provide a better understanding of nonconventional apoptotic pathways in higher eukaryotes. It will also allow the development of new therapeutic tools via the identification of new specific targets.

11.
Sci Rep ; 7(1): 16745, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196634

RESUMO

The redesign of enzyme active sites to alter their function or specificity is a difficult yet appealing challenge. Here we used a structure-based design approach to engineer the lactonase SsoPox from Sulfolobus solfataricus into a phosphotriesterase. The five best variants were characterized and their structure was solved. The most active variant, αsD6 (V27A-Y97W-L228M-W263M) demonstrates a large increase in catalytic efficiencies over the wild-type enzyme, with increases of 2,210-fold, 163-fold, 58-fold, 16-fold against methyl-parathion, malathion, ethyl-paraoxon, and methyl-paraoxon, respectively. Interestingly, the best mutants are also capable of degrading fensulfothion, which is reported to be an inhibitor for the wild-type enzyme, as well as others that are not substrates of the starting template or previously reported W263 mutants. The broad specificity of these engineered variants makes them promising candidates for the bioremediation of organophosphorus compounds. Analysis of their structures reveals that the increase in activity mainly occurs through the destabilization of the active site loop involved in substrate binding, and it has been observed that the level of disorder correlates with the width of the enzyme specificity spectrum. This finding supports the idea that active site conformational flexibility is essential to the acquisition of broader substrate specificity.


Assuntos
Hidrolases de Triester Fosfórico/química , Engenharia de Proteínas , Substituição de Aminoácidos , Sítios de Ligação , Biodegradação Ambiental , Domínio Catalítico , Ativação Enzimática , Modelos Moleculares , Estrutura Molecular , Mutação , Praguicidas/química , Praguicidas/metabolismo , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética , Temperatura
12.
Sci Rep ; 7(1): 15194, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123147

RESUMO

Organophosphorus insecticides (OPs) are toxic compounds used for agricultural purposes and responsible for severe types of contamination worldwide. OPs may also induce chronic deleterious effects and developmental disruption. Finding remediation strategies is a major concern to diminish their impact on environment and human health. Enzymes have emerged as a promising eco-friendly route for decontaminating OPs. The enzyme SsoPox from the archaea Sulfolobus solfataricus has been particularly studied, considering both its tremendous stability and phosphotriesterase activity. However, the toxicity of the degradation products generated through enzyme hydrolysis has been poorly investigated. To address both neurotoxicity and developmental perturbation, freshwater planarians from Platyhelminthes were considered to evaluate the impact of OP and degradation product exposure. Planarians have a large proportion of stem cells that give them an unconventional capacity for regeneration. OPs were found to be highly toxic to planarians and enzyme decontamination drastically enhanced survival rate. Although not completely innocuous, the degradation products were found to be less toxic than insecticides and reduced poisoning effects by increasing NOEC values by up to eight-fold. SsoPox also limited detrimental consequences on planarian mobility and enabled them to recover a non-exposed type regeneration process suggesting that enzymatic decontamination is a promising alternative to bioremediation.


Assuntos
Inseticidas/metabolismo , Inseticidas/toxicidade , Compostos Organofosforados/metabolismo , Compostos Organofosforados/toxicidade , Diester Fosfórico Hidrolases/metabolismo , Planárias/efeitos dos fármacos , Sulfolobus solfataricus/enzimologia , Animais , Biotransformação , Hidrólise , Locomoção/efeitos dos fármacos , Planárias/fisiologia , Análise de Sobrevida
13.
Front Microbiol ; 8: 227, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261183

RESUMO

Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications.

14.
Chem Biol Interact ; 267: 104-115, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27223408

RESUMO

Numerous bacteria use quorum sensing (QS) to synchronize their behavior and monitor their population density. They use signaling molecules known as autoinducers (AI's) that are synthesized and secreted into their local environment to regulate QS-dependent gene expression. Among QS-regulated pathways, biofilm formation and virulence factor secretion are particularly problematic as they are involved in surface-attachment, antimicrobial agent resistance, toxicity, and pathogenicity. Targeting QS represents a promising strategy to inhibit undesirable bacterial traits. This strategy, referred to as quorum quenching (QQ), includes QS-inhibitors and QQ enzymes. These approaches are appealing because they do not directly challenge bacterial survival, and consequently selection pressure may be low, yielding a lower occurrence of resistance. QQ enzymes are particularly promising because they act extracellularly to degrade AI's and can be used in catalytic quantities. This review draws an overview of QQ enzyme related applications, covering several economically important fields such as agriculture, aquaculture, biofouling and health issues. Finally, the possibility of resistance mechanism occurrence to QQ strategies is discussed.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Amidoidrolases/metabolismo , Animais , Organismos Aquáticos/microbiologia , Bactérias Gram-Negativas/fisiologia , Doenças das Plantas/microbiologia
15.
Environ Sci Pollut Res Int ; 23(9): 8200-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832878

RESUMO

Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.


Assuntos
Descontaminação/métodos , Poluentes Ambientais/química , Organofosfatos/química , Catálise , Poluentes Ambientais/análise , Organofosfatos/análise , Compostos Organofosforados/análise , Compostos Organofosforados/química , Praguicidas/análise , Praguicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA