Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 105(3): 368504221113193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833373

RESUMO

Today, due to the end of fossil fuels and efforts to reduce the use of renewable resources, wind energy is a suitable option for the production of electrical energy due to its high-power generation. To increase the output efficiency of wind turbines, maximum power point tracking techniques are required for wind turbine energy conversion systems. In this research, the maximum power point (MPPT) method for two-way fed wind turbine systems (DFIG) is presented. The performance of the induction generator is presented on both sides of the power and the values of this generator such as speed, torque, voltage, current and maximum power at the time of wind speed changes. The presented work is presented in two scenarios and the model is performed without the algorithm then, a maximum power point tracking method based on the Colonial Competition Algorithm (ICA) has been applied to estimate the power of the two power induction generators. According to the results, it can be said that in the scenario with the algorithm of generating electric power by the turbine, several times in the production state is 9 MW, which is the rate of the turbine's nominal power, while in another scenario, the power generated by the turbine is 85% of the power in the state with the algorithm.

2.
Int Immunopharmacol ; 110: 108983, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35750016

RESUMO

The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).


Assuntos
Ácidos Graxos Voláteis , Microbiota , Butiratos , Ácidos Graxos Voláteis/metabolismo , Propionatos/metabolismo
3.
Nanoscale Res Lett ; 17(1): 50, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499625

RESUMO

Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA