Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 18: 1134-1141, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900286

RESUMO

In this data article we describe screening of various lipases for the regioselective acylation of Andrographolide. Each lipase was screened with seven acyl donors. Amano lipase AK from Pseudomonas fluorescens was used for the synthesis of two new acylated andrographolide derivatives. Two new compounds, andrographolide-14-propionate and andrographolide-14-caproate were characterized by various spectral studies. These two derivatives showed more antimicrobial activity than andrographolide.

2.
Bioorg Med Chem Lett ; 28(6): 1132-1137, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475585

RESUMO

Labdane diterpene andrographolide (1) is a major constituent of Andrographis paniculata and known to exhibit wide spectrum of biological activities. In this study, regioselective monoesters of (1) have been synthesized by using Amano lipase AK (Pseudomonas fluorescens) as a biocatalyst. Amano lipase AK was able to execute highly efficient esterification of hydroxyl group attached to C-14 carbon of (1) in presence of acyl donors. Among the various synthesized derivatives including two novel compounds such as andrographolide-14-propionate (3) and andrographolide-14-caproate (5) displayed antimicrobial activity against Staphylococcus aureus with low minimal inhibitory concentration (MIC) 4 µg/mL and 16 µg/mL respectively. Furthermore, they have shown low hemolysis activity at their respective MIC and increase in the permeability of the bacterial cell membrane as delineated by FITC uptake and SEM imaging studies.


Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Lipase/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/química , Diterpenos/química , Diterpenos/metabolismo , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas fluorescens/enzimologia , Estereoisomerismo , Relação Estrutura-Atividade
3.
Data Brief ; 14: 551-557, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28861453

RESUMO

Stem cells have peculiar property to self-renew and differentiate. It is important to control their fate in safe and effective ways for their therapeutic use. The mediators of essential polyunsaturated fatty acids (PUFAs) namely Arachidonic acid (AA) and Docosahexanoic acid (DHA) are known to play a role in haematopoiesis via various metabolic pathways [1]. However the direct effect of purified AA or DHA on haematopoiesis has not been well investigated yet. We have reported that oral administration of PUFAs enhanced haematopoiesis in mice [2]. Signaling Leukocyte Antigen Molecule (SLAM) (CD48-CD150+) phenotype consists of pure population of haematopoietic stem cells (HSCs). Herein we observed higher percentage of SLAM (CD48-CD150+) phenotype in the bone marrow (BM) cells of mice fed with AA or DHA compared to PBS fed control mice. Data from engraftment study depicts that BM from AA/DHA-fed mice showed higher absolute number of donor cells in recipient mice compared to control. The enhanced hematopoiesis observed in AA/DHA-fed mice was returned to normal when the mice were kept on normal diet for six weeks (after ten days of oral feeding). We confirmed GCMS (Gas Chromatography-Mass Spectroscopy) retention times of AA and DHA by co-injecting fatty acid extract from AA or DHA fed mice with purified AA or DHA standards respectively. Representative flow cytometry profile of Lin-Sca-1+c-kit+(LSK) cells showed higher expression of CXCR4 protein and ligands of Wnt, Notch1 signaling in BM of AA/DHA-fed mice.

4.
J Nutr Biochem ; 47: 94-105, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28570944

RESUMO

Hematopoietic stem cells play the vital role of maintaining appropriate levels of cells in blood. Therefore, regulation of their fate is essential for their effective therapeutic use. Here we report the role of polyunsaturated fatty acids (PUFAs) in regulating hematopoiesis which has not been explored well so far. Mice were fed daily for 10 days with n-6/n-3 PUFAs, viz. linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid and docosahexanoic acid (DHA) in four separate test groups with phosphate-buffered saline fed mice as control set. The bone marrow cells of PUFA-fed mice showed a significantly higher hematopoiesis as assessed using side population, Lin-Sca-1+ckit+, colony-forming unit (CFU), long-term culture, CFU-spleen assay and engraftment potential as compared to the control set. Thrombopoiesis was also stimulated in PUFA-fed mice. A combination of DHA and AA was found to be more effective than when either was fed individually. Higher incorporation of PUFAs as well as products of their metabolism was observed in the bone marrow cells of PUFA-fed mice. A stimulation of the Wnt, CXCR4 and Notch1 pathways was observed in PUFA-fed mice. The clinical relevance of this study was evident when bone marrow-transplanted recipient mice, which were fed with PUFAs, showed higher engraftment of donor cells, suggesting that the bone marrow microenvironment may also be stimulated by feeding with PUFAs. These data indicate that oral administration of PUFAs in mice stimulates hematopoiesis and thrombopoiesis and could serve as a valuable supplemental therapy in situations of hematopoietic failure.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/uso terapêutico , Hematopoese , Trombopoese , Regulação para Cima , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Suplementos Nutricionais/efeitos adversos , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-6/efeitos adversos , Feminino , Regulação da Expressão Gênica , Sobrevivência de Enxerto , Hematínicos/uso terapêutico , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Receptor Notch1/agonistas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores CXCR4/agonistas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Condicionamento Pré-Transplante/efeitos adversos , Proteínas Wnt/agonistas , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA