Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine X ; 15: 100400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965276

RESUMO

The global emergency of unexpected pathogens, exemplified by SARS-CoV-2, has emphasized the importance of vaccines in thwarting infection and curtailing the progression of severe disease. The scourge of tuberculosis (TB), emanating from the Mycobacterium tuberculosis (Mtb) complex, has inflicted a more profound toll in terms of mortality and morbidity than any other infectious agents prior to the SARS-CoV-2 pandemic. Despite the existence of Bacillus Calmette-Guérin (BCG), the only licensed vaccine developed a century ago, its efficacy against TB remains unsatisfactory, particularly in preventing pulmonary Mtb infections in adolescents and adults. However, collaborations between academic and industrial entities have led to a renewed impetus in the development of TB vaccines, with numerous candidates, particularly subunit vaccines with specialized adjuvants, exhibiting promising outcomes in recent clinical studies. Adjuvants are crucial in modulating optimal immunological responses, by endowing immune cells with sufficient antigen and immune signals. As exemplified by the COVID-19 vaccine landscape, the interplay between vaccine efficacy and adverse effects is of paramount importance, particularly for the elderly and individuals with underlying ailments such as diabetes and concurrent infections. In this regard, adjuvants hold the key to optimizing vaccine efficacy and safety. This review accentuates the pivotal roles of adjuvants and their underlying mechanisms in the development of TB vaccines. Furthermore, we expound on the prospects for the development of more efficacious adjuvants and their synergistic combinations for individuals in diverse states, such as aging, HIV co-infection, and diabetes, by examining the immunological alterations that arise with aging and comparing them with those observed in younger cohorts.

2.
Vaccine ; 38(6): 1416-1423, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862194

RESUMO

Tuberculosis still claims more lives than any other pathogen, and a vaccine better than BCG is urgently needed. One of the challenges for novel TB vaccines is to protect against all Mycobacterium tuberculosis lineages, including the most virulent ones, such as the Beijing lineage. Here we developed a live attenuated M. tuberculosis mutant derived from GC1237, a Beijing strain responsible for tuberculosis outbreaks in the Canary Islands. The mutant strain is inactivated both in the Rv1503c gene, responsible for surface glycolipid synthesis, and in the two-component global regulator PhoPR. This double mutant is as safe as BCG in immunodeficient SCID mice. In immune-competent mice and guinea pigs, the mutant is as protective as BCG against M. tuberculosis strains of common lineage 4 (Euro-American). By contrast, in mice the vaccine is protective against a M. tuberculosis strain of lineage 2 (East-Asian, Beijing), while BCG is not. These results highlight differences in protection efficacy of live attenuated M. tuberculosis-derived vaccine candidates depending on their genetic background, and provide insights for the development of novel live vaccines against TB, especially in East-Asian countries where M. tuberculosis strains of the Beijing family are highly dominant.


Assuntos
Vacinas contra a Tuberculose/imunologia , Tuberculose , Animais , Vacina BCG , Cobaias , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinas Atenuadas/imunologia
3.
FEBS Lett ; 518(1-3): 154-8, 2002 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-11997037

RESUMO

Prostaglandin E2 (PGE2)-dependent effects on various cell responses are regulated by respective PGE2 receptors (EP1, EP2, EP3, EP4) expressing in target cells. Alveolar type II cell (a main progenitor cell of lung adenocarcinoma) expressed only EP4, while human lung adenocarcinoma cells (A549) expressed EP3 as well as EP4. An antagonistic effect of EP3 against EP4 through the modulation of cyclic AMP level is required for PGE2-mediated activation of Ras signal pathway in A549 cells. These results suggest that the expression of EP3 may be a critical factor for the PGE2-mediated activation of Ras signal pathway in A549 cells.


Assuntos
Adenocarcinoma/metabolismo , Dinoprostona/farmacologia , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Prostaglandina E/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Divisão Celular/efeitos dos fármacos , AMP Cíclico/biossíntese , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Alvéolos Pulmonares/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP3 , Transdução de Sinais , Células Tumorais Cultivadas , Fatores de Virulência de Bordetella/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA