Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(3): 453-469, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37612878

RESUMO

Leishmania is the causative agent of the tropical neglected disease leishmaniasis and infects macrophages as its definitive host cell. In order to sustain and propagate infections, Leishmania parasites have to complete cycles of exit and re-infection. Yet, the mechanism driving the parasite spread to other cells remains unclear. Recent studies reported pro-inflammatory monocytes as replicative niche of Leishmania major and showed prolonged expression of IL-1ß at the site of infection, indicating an activation of the NLRP3 inflammasome and pointing toward pyroptosis as a possible mechanism of parasite spread. To address the species-specific inflammasome activation of human cells, we characterized the BLaER1 monocytes as a model for L. major infection. We found that BLaER1 monocytes support infection and activation by Leishmania parasites to the same extent as primary human macrophages. Harnessing the possibilities of this infection model, we first showed that BLaER1 GSDMD-/- cells, which carry a deletion of the pore-forming protein gasdermin D, are more resistant to pyroptotic cell death and, concomitantly, display a strongly delayed release of intracellular parasite. Using that knockout in a co-incubation assay in comparison with wild-type BLaER1 cells, we demonstrate that impairment of the pyroptosis pathway leads to lower rates of parasite spread to new host cells, thus, implicating pyroptotic cell death as a possible exit mechanism of L. major in pro-inflammatory microenvironments.


Assuntos
Inflamassomos , Leishmania , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Piroptose/fisiologia , Proteínas de Ligação a Fosfato/metabolismo , Macrófagos , Leishmania/metabolismo , Interleucina-1beta/metabolismo
2.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310793

RESUMO

The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.


Assuntos
Apoptose , Leishmania major , Fagócitos , Leishmania major/patogenicidade , Fagócitos/parasitologia , Humanos , Virulência , Camundongos Endogâmicos C57BL , Células Cultivadas , Camundongos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA