Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20649, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232128

RESUMO

The ubiquitous presence of electronic devices demands robust hardware security mechanisms to safeguard sensitive information from threats. This paper presents a physical unclonable function (PUF) circuit based on magnetoresistive random access memory (MRAM). The circuit utilizes inherent characteristics arising from fabrication variations, specifically magnetic tunnel junction (MTJ) cell resistance, to produce corresponding outputs for applied challenges. In contrast to Arbiter PUF, the proposed effectively satisfies the strict avalanche criterion (SAC). Additionally, the grid-like structure of the proposed circuit preserves its resistance against machine learning-based modeling attacks. Various machine learning (ML) attacks employing multilayer perceptron (MLP), linear regression (LR), and support vector machine (SVM) networks are simulated for two-array and four-array architectures. The MLP-attack prediction accuracy was 53.61% for a two-array circuit and 49.87% for a four-array circuit, showcasing robust performance even under the worst-case process variations. In addition, deep learning-based modeling attacks in considerable high dimensions utilizing multiple networks such as convolutional neural network (CNN), recurrent neural network (RNN), MLP, and Larq are used with the accuracy of 50.31%, 50.25%, 50.31%, and 50.31%, respectively. The efficiency of the proposed circuit at the layout level is also investigated for simplified two-array architecture. The simulation results indicate that the proposed circuit offers intra and inter-hamming distance (HD) with a mean of 0.98% and 49.96%, respectively, and a mean diffuseness of 49.09%.

2.
Biosensors (Basel) ; 14(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39194614

RESUMO

A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect. Thus, these suspended optical nanoribbons can be moved and change the grating pattern by the biological bonds that happened on the modified cantilever surface. Such structural variations lead to significant changes in the optical response of the metamaterial system under illuminating angled light and subsequently shift its resonance wavelength spectrum. As a result, the proposed biosensor shows appropriate analytical characteristics, including the mechanical sensitivity of Sm = 11.55 µm/Nm-1, the optical sensitivity of So = Δλ/Δd = 0.7 translated to So = Δλ/Δσ = 8.08 µm/Nm-1, and the quality factor of Q = 102.7. Also, considering the importance of multi-biomarker detection, a specific design of the proposed topology has been introduced as an array for identifying different biomolecules. Based on the conducted modeling and analyses, the presented device poses the capability of detecting multiple biomarkers of disease at very low concentrations with proper precision in fluidic environments, offering a suitable bio-platform for lab-on-chip structures.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Sistemas Microeletromecânicos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Biomarcadores/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Sistemas Microeletromecânicos/instrumentação , Sistemas Microeletromecânicos/métodos
3.
Sci Rep ; 14(1): 1633, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238435

RESUMO

Rapid and label-free detection of very low concentrations of biomarkers in disease diagnosis or therapeutic drug monitoring is essential to prevent disease progression in Point of Care Testing. For this purpose, we propose a multi-purpose optical Bio-Micro-Electro-Mechanical-System (BioMEMS) sensing platform which can precisely measure very small changes of biomolecules concentrations in plasma-like buffer samples. This is realized by the development of an interferometric detection method on highly sensitive MEMS transducers (cantilevers). This approach facilitates the precise analysis of the obtained results to determine the analyte type and its concentrations. Furthermore, the proposed multi-purpose platform can be used for a wide range of biological assessments in various concentration levels by the use of an appropriate bioreceptor and the control of its coating density on the cantilever surface. In this study, the present system is prepared for the identification of digoxin medication in its therapeutic window for therapeutic drug monitoring as a case study. The experimental results represent the repeatability and stability of the proposed device as well as its capability to detect the analytes in less than eight minutes for all samples. In addition, according to the experiments carried out for very low concentrations of digoxin in plasma-like buffer, the detection limit of LOD = 300 fM and the maximum sensitivity of S = 5.5 × 1012 AU/M are achieved for the implemented biosensor. The present ultrasensitive multi-purpose BioMEMS sensor can be a fully-integrated, cost-effective device to precisely analyze various biomarker concentrations for various biomedical applications.


Assuntos
Técnicas Biossensoriais , Sistemas Microeletromecânicos , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores , Técnicas Biossensoriais/métodos
4.
IEEE Trans Nanobioscience ; 23(1): 11-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37163409

RESUMO

An optical nanoelectromechanical platform relied on a SRR metamaterial system is presented in this paper as a label-free biosensor. This structure includes a flexible BioNEMS (Bio-Nano-Electro-Mechanical Systems) transducer and a proposed SRR metamaterials for detection of biological changes. Metamaterial cells consist of two parts which are coupled with an air gap distance. A functionalized BioNEMS beam supports one part of the proposed metamaterial cells. When patient samples including target analytes is exposed to the NEMS beam surface, the specific bio-interactions are happened and the energy (surface stress type) is released on the surface. This energy, which is induced only to the one side of the movable beam, causes a differential surface stress and thus displaces the nanomechanical beam. As a result, the air distance between two separated cells of the metamaterial unit is changed. This leads to varying the cell coupling effect which excites plasmon modes in a different wavelength. Therefore, biological quantities can be measured by detecting the resonance wavelength changes. Moreover, analyzing the device by various approaches results its functional characteristics as follows: detection sensitivity of 4251 nm/RIU, figure of merit (FOM) of 500.1 RIU -1 , mechanical sensitivity of [Formula: see text]/Nm -1 and resonant frequency of 17.1 kHz. Consequently, this mechanism is important for label-free biosensing due to its high potential for sensitive and quantitative detection of target analytes which leads to accurate diagnosis of diseases or identification of drugs.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Humanos , Técnicas Biossensoriais/métodos
5.
Nanotechnology ; 33(26)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35299159

RESUMO

A novel approach based on optical Biological-Nano-Electro-Mechanical-Systems (BioNEMS) sensor is presented in this paper to provide highly sensitive and precise detection of biomolecules. The proposed BioNEMS sensor is relied on a bi-layer metamaterials structure, tuned by its wavelength. The presented biosensor consists of a BioNEMS membrane coated by Complementary Split Ring Resonators and an array of Split Ring Resonators cells on the substrate. While the immobilized bioreceptors adsorb the biomarkers (i.e. mRNA or protein), it causes a bending of the suspended membrane. This is due to the differential surface stress which is induced on the Nano-Electro-Mechanical-Systems structure. As a consequence, the coupling strength of two complementary metamaterial layers and thus the electromagnetic response of the biosensor are changed. Furthermore, the proposed device is designed and analyzed by numerical and analytical approaches in order to obtain its functional characteristics as follows: detection sensitivity of 21 967 nm/RIU, figure of merit of 327.8 RIU-1", mechanical sensitivity of 2.6µm/Nm-1" and resonant frequency of 4.92 kHz. According to the obtained results, the functional characteristics of the proposed label-free biosensor show its high potential for highly sensitive and accurate molecule detections, disease diagnosis as well as drug delivery tests for Lab-On-Chip systems.


Assuntos
Técnicas Biossensoriais , Biomarcadores
6.
Sens Imaging ; 22(1): 35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335120

RESUMO

In this paper, a BioMEMS sensor by using a surface-stress sensing approach, connected to a highly sensitive optical sensing system, is proposed to diagnose various types of biomolecules. The MEMS transducer is composed of a fixed-fixed beam with immobilized receptors on the surface which is connected to a Ring Resonator (RR) filter. The interaction between the target biomolecules and the receptors induces surface stresses on the beam. This stress results in the beam deformation which leads to changes in the coupling coefficient of the RR. Consequently, the transmission spectrum of the RR experiences changes, measured by using an optical photo-detector. Therefore, by analyzing the response of the photo-detector output, one can detect the number of target biomolecules in the sample and assign a level of contamination, infection or bioparticles, caused by the specific disease. Furthermore, the MEMS functional characteristics and the optical properties of the proposed biosensor are designed and analyzed respectively by using the finite element method (FEM) and the finite difference time domain (FDTD) approach. The obtained functional characteristics of the proposed device show that the present optical BioMEMS sensor can be used for highly sensitive diagnoses of various types of diseases and their progress level.

7.
Appl Opt ; 55(32): 8993-8999, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27857280

RESUMO

In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA